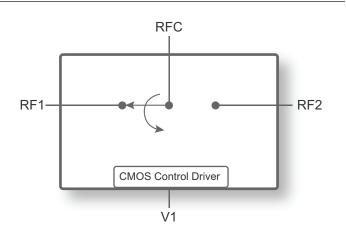
PE42726

Document Category: Product Specification

UltraCMOS® SPDT RF Switch, 5-1794 MHz


Features

- Supports DOCSIS 3.0/1 requirements
- · Exceptional harmonics
 - 2fo of –121 dBc @ 17 MHz
 - 3fo of -150 dBc @ 17 MHz
- · Best in class linearity across frequency band
- · Low insertion loss and high isolation performance
 - Insertion loss of 0.3 dB @ 1218 MHz
 - Isolation of 39 dB @ 204 MHz
- Packaging 12-lead 3 × 3 × 0.75 mm QFN

Applications

- Broadband market (DOCSIS 3.0/1)
 - Cable modem
 - Set-top box
 - Residential gateway
- · Filter bank switching
- Relay replacement between DOCSIS 3.0 and DOCSIS 3.1 configurations

Figure 1 • PE42726 Functional Diagram

Product Description

The PE42726 is a HaRP™ technology-enhanced reflective SPDT RF switch designed for use in cable applications including DOCSIS 3.0/1 cable modem, set-top box and residential gateway. It delivers high linearity, excellent harmonics performance and high surge immunity in the 5–1794 MHz band. It also features low insertion loss and high isolation performance making the PE42726 ideal for DOCSIS 3.1 applications.

The PE42726 is manufactured on pSemi's UltraCMOS® process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

©2021, pSemi Corporation. All rights reserved. • Headquarters: 9369 Carroll Park Drive, San Diego, CA, 92121

Product Specification DOC-103983-2 – (07/2021)

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in **Table 1** may cause permanent damage. Operation should be restricted to the limits in **Table 2**. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in **Table 1**.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Table 1 ■ Absolute Maximum Ratings for PE42726

Parameter/Condition	Min	Max	Unit
Supply voltage, V _{DD}	-0.3	5.5	V
Digital input voltage, V1	-0.3	3.6	V
RF input power, 75Ω		86	dBmV
Maximum junction temperature		+150	°C
Storage temperature range	-65	+150	°C
ESD voltage HBM ⁽¹⁾ , all pins		2000	V
ESD voltage CDM ⁽²⁾ , all pins		500	V

Notes:

¹⁾ Human body model (MIL-STD 883 Method 3015).

²⁾ Charged device model (JEDEC JESD22-C101).

Recommended Operating Conditions

Table 2 lists the recommended operating conditions for the PE42726. Devices should not be operated outside the operating conditions listed below.

Table 2 ■ Recommended Operating Conditions for PE42726

Parameter	Min	Тур	Max	Unit
Supply voltage, V _{DD}	2.3	3.3	5.5	V
Supply current, I _{DD}		80	150	μA
Digital input high, V1	1.17		3.6 ⁽¹⁾	V
Digital input low, V1	-0.3		0.6	V
RF input power, CW ⁽²⁾			80	dBmV
RF input power, peak ⁽³⁾			85	dBmV
Operating temperature range	-40	+25	+85	°C

Notes:

- 1) Maximum digital input voltage is limited to $\ensuremath{V_{DD}}$ and cannot exceed 3.6V.
- 2) 100% duty cycle, 75Ω .
- 3) OFDMA DOCSIS 3.1, single channel, 75Ω .

DOC-103983-2 - (07/2021) Page 3 of 12

Electrical Specifications

Table 3 provides the PE42726 key electrical specifications @ +25 °C, V_{DD} = 3.3V, Z_{S} = Z_{L} = 75 Ω , unless otherwise specified.

Table 3 ■ PE42726 Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating frequency			5		1794	MHz
Insertion loss ⁽¹⁾	RFC-RFX	5–204 MHz 204–1218 MHz 1218–1794 MHz		0.10 0.30 0.40	0.20 0.55	dB dB dB
Isolation	All paths	5–204 MHz 204–612 MHz 612–1218 MHz 1218–1794 MHz	37 27 21	39 29 23 21		dB dB dB dB
Return loss ⁽¹⁾	RFC-RFX	5–204 MHz 204–612 MHz 612–1218 MHz 1218–1794 MHz	25 16	30 20 14 13		dB dB dB dB
2nd harmonic, 2fo	RFX	fo = 17 MHz Average P_{CW} = 65 dBmV fo = 170 MHz Average P_{CW} = 65 dBmV fo = 900 MHz Average P_{CW} = 65 dBmV		-121 -121 -121		dBc dBc dBc
3rd harmonic, 3fo	RFX	fo = 17 MHz Average P _{CW} = 65 dBmV fo = 170 MHz Average P _{CW} = 65 dBmV fo = 900 MHz		-150 -135		dBc dBc
Input 0.1dB compression point ⁽²⁾	RFC-RFX	Average P _{CW} = 65 dBmV 5–1218 MHz		-135 87		dBc dBmV
Switching time		50% CTRL to 90% or 10% RF		38		μs

Notes

2) The input 0.1dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (75Ω).

¹⁾ High frequency performance can be improved by external matching.

Switching Frequency

The PE42726 has a maximum 10 kHz switching frequency. Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reached 50% of the final value and the point the output signal reaches within 10% or 90% of its target value.

Spurious Performance

The PE42726 fundamental occurs at 2.5 to 3 MHz. With V1 = H the typical spur level due to the harmonics is -172 dBm/Hz giving a spur level of -114 dBm* in the certification BW of 160 kHz. With V1 = 0 the spur performance is -172 dBm/Hz.

*Note: The -160 dBm/Hz level is not constant across the whole 160 kHz bandwidth, so the total power in the specified bandwidth is < -160+10*log(BW).

Control Logic

Table 5 provides the control logic truth table for the PE42726.

Table 5 • Truth Table for PE42726

State	V1
RFC-RF1	Н
RFC-RF2	L

Thermal Data

Psi-JT (Ψ_{JT}), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2).

$$\Psi_{\mathsf{JT}} = (\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{T}})/\mathsf{P}$$

where

 $\Psi_{\rm JT}$ = junction-to-top of package characterization parameter, °C/W

 T_J = die junction temperature, °C

 T_T = package temperature (top surface, in the center), °C

P = power dissipated by device, Watts

Table 4 ■ Thermal Data for PE42726

Parameter	Тур	Unit
Ψ_{JT}	21	°C/W

Typical Performance Data

Figure 2–Figure 11 show the typical performance data @ +25 °C, V_{DD} = 3.3V, Z_{S} = Z_{L} = 75 Ω , unless otherwise specified.

Figure 2 • Insertion Loss vs Temperature (RFC-RFX)

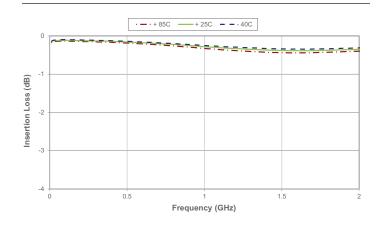


Figure 5 • Insertion Loss vs V_{DD} (RFC-RFX)

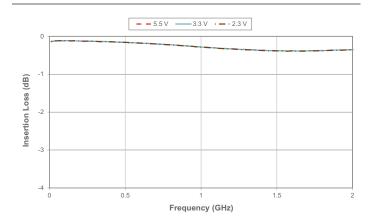


Figure 3 • RFC Port Return Loss vs Temperature

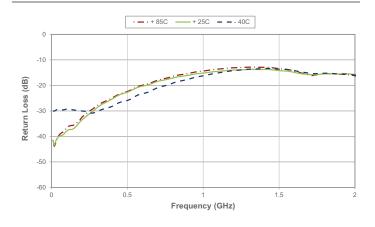


Figure 6 • RFC Port Return Loss vs V_{DD}

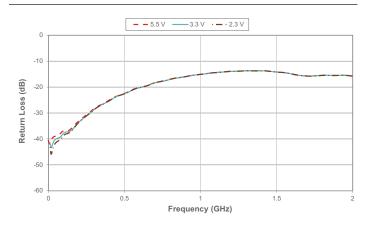


Figure 4 ■ RFX Port Return Loss vs Temperature

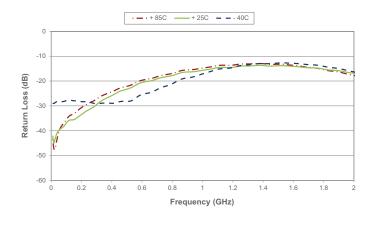


Figure 7 • RFX Port Return Loss vs V_{DD}

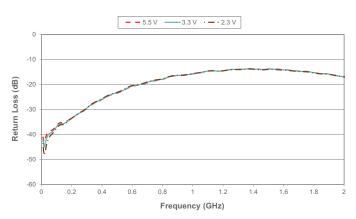


Figure 8 ■ Isolation vs Temperature (RFX-RFX)

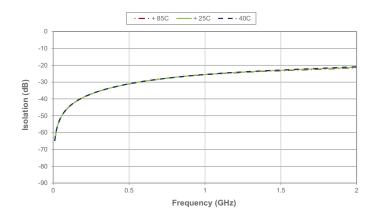


Figure 9 • Isolation vs Temperature (RFC-RFX)

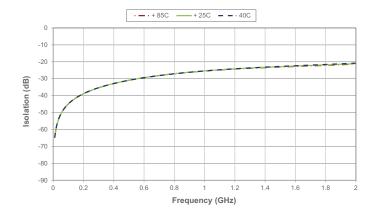


Figure 10 • Isolation vs V_{DD} (RFX-RFX)

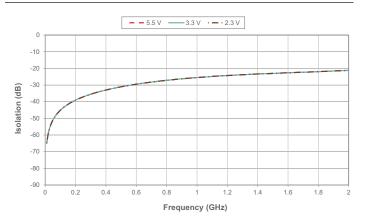
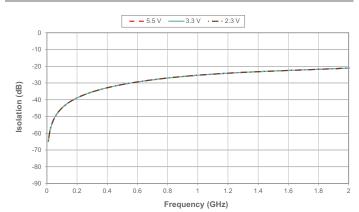
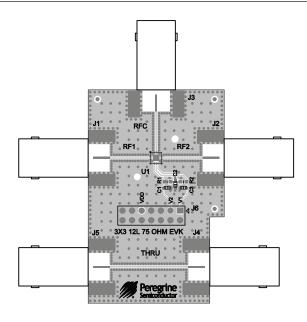
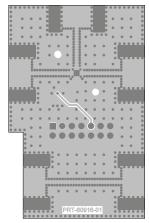



Figure 11 • Isolation vs V_{DD} (RFC-RFX)


DOC-103983-2 - (07/2021) Page 7 of 12



Evaluation Kit

The PE42726 evaluation board was designed to ease customer evaluation of the PE42726 RF switch. The RF common port is connected through a 75Ω transmission line via the F-Type connector, J3. RF1 and RF2 ports are connected through 75Ω transmission lines via F-Type connectors J1 and J2, respectively. A 75Ω through transmission line is available via F-Type connectors J4 (THRU left) and J5 (THRU right), which can be used to deembed the loss of the PCB. J6 provides DC and digital inputs to the device.

Figure 12 • Evaluation Kit Layout for PE42726

Pin Information

This section provides pinout information for the PE42726. **Figure 13** shows the pin map of this device for the available package. **Table 6** provides a description for each pin.

Figure 13 • Pin Configuration (Top View)

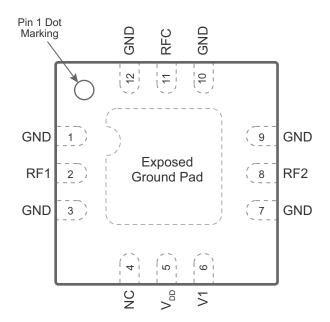


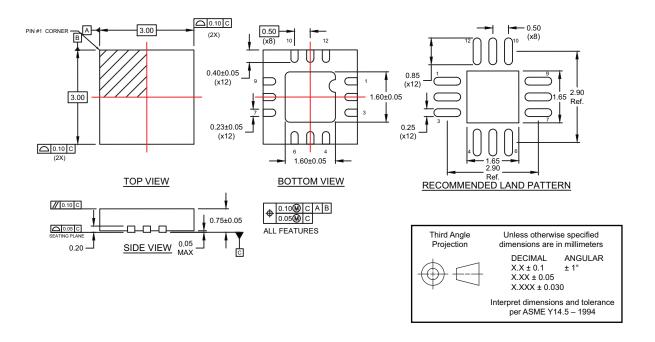
Table 6 ■ Pin Descriptions for PE42726

Pin No.	Pin Name	Description	
1, 3, 7, 9, 10, 12	GND	Ground	
2	RF1 ^(*)	RF port 1	
4	NC	Do not connect	
5	V_{DD}	Supply voltage (nominal 3.3V)	
6	V1	Digital control logic input 1	
8	RF2 ^(*)	RF port 2	
11	RFC ^(*)	RF common	
Pad	GND	Exposed pad: ground for proper operation	

Note: * RF pins 2, 8 and 11 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met.

DOC-103983-2 - (07/2021) Page 9 of 12

Packaging Information


This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE42726 in the 12-lead 3 × 3 × 0.75 mm QFN package is MSL1.

Package Drawing

Figure 14 ■ Package Mechanical Drawing for 12-lead 3 × 3 × 0.75 mm QFN

Page 10 of 12 DOC-103983-2 – (07/2021)

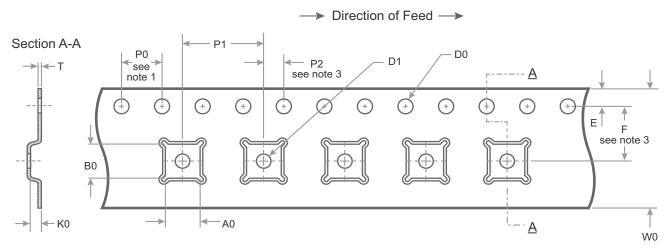
Top-Marking Specification

Figure 15 • Package Marking Specifications for PE42726

• PPPPPP YYWW ZZZZZZ

= Pin 1 indicator

PPPP = Product part number

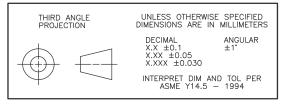

YY = Last two digits of assembly year (2021 = 21)
WW = Work week of assembly lot start date (01, ..., 52)

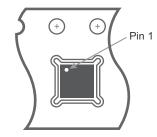
ZZZZZZ = Assembly lot code (max six characters)

DOC-104030-1

Tape and Reel Specification

Figure 16 ■ Tape and Reel Specifications for 12-lead 3 × 3 × 0.75 mm QFN


Notes:


A0	3.30	
В0	3.30	
K0	1.10	
D0	1.50 + 0.1/ -0.0	
D1	1.5 min	
E	1.75 ± 0.10	
F	5.50 ± 0.05	
P0	4.00	
P1	8.00	
P2	2.00 ± 0.05	
Т	0.30 ± 0.05	

12.00 ± 0.3

W0

- 1. 10 Sprocket hole pitch cumulative tolerance ±0.2
- 2. Camber in compliance with EIA 481
- 3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

Device Orientation in Tape

Ordering Information

Table 7 lists the available ordering codes for the PE42726 as well as available shipping methods.

Table 7 ■ Order Codes for PE42726

Order Codes	Description	Packaging	Shipping Method
PE42726A-Z	PE42726 SPDT RF switch	12-lead 3 × 3 × 0.75 mm QFN	3000 units/T&R
EK42726-01	PE42726 Evaluation kit	Evaluation kit	1/Box

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief

This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com.

Sales Contact

For additional information, contact Sales at sales@psemi.com.

Disclaimers

The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2021, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.