Summary

Peregrine Semiconductor Application Note AN33 demonstrates socket and software compatibility of the 5 bit and 6 bit digital step attenuators products. This family offers high performance attenuation accuracy and linearity using only a single 3 volt supply.

1. Introduction

Typical digital step attenuators (DSA) in GaAs technology require either a single or bipolar 5 Volt supply, and either a +5 or -5 Volt control interface. Peregrine DSA’s require only one +3 volt supply to deliver extremely high linearity and high accuracy. Other features include default power-up attenuation state, user selectable serial, parallel, and direct mode programming, 3 volt CMOS interface, 50 and 75 ohm variations, and very low power consumption. This document describes forward / backward compatibility of the 5 bit and 6 bit models.

Features

- 5 & 6 bit models
- Common flexible parallel and serial programming interfaces
- Unique power-up state selection
- Positive CMOS control logic
- High attenuation accuracy and Linearity over temperature and frequency
- Very low power consumption
- Single-supply operation
- 50Ω impedance
- Packaged in a 20 Lead 4x4mm QFN

Figure 1. Typical 6 bit evaluation schematic

Figure 2. 20 pin / 4x4 QFN
A 6 bit attenuator can be installed in a 5 bit design. The highlighted pins are different for 5 bit users as explained below.

6-bit Attenuator

<table>
<thead>
<tr>
<th>Pin</th>
<th>C16</th>
<th>C8</th>
<th>C4</th>
<th>C2</th>
<th>C1</th>
<th>C0.5</th>
<th>Attenuation State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reference Loss</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 dB</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16 dB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>31.5 dB</td>
</tr>
</tbody>
</table>

Note: Not all possible combinations of C0.5-C8 are shown.

5-bit Attenuator

<table>
<thead>
<tr>
<th>Pin</th>
<th>C16</th>
<th>C8</th>
<th>C4</th>
<th>C2</th>
<th>C1</th>
<th>C0.5</th>
<th>Attenuation State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Reference Loss</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 dB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 dB</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16 dB</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>31.5 dB</td>
</tr>
</tbody>
</table>

Note: Not all possible combinations of C0.5-C8 are shown.

5-bit 31 dB Serial Timing

Figure 3. 6-bit 31.5 dB Serial Timing

Figure 4. 5-bit 15.5 dB Serial Timing

Figure 5. 5-bit 31 dB Serial Timing
2. Generic Hardware Design Consideration

The 5 bit and 6 bit parts share a common pinout. The only differences between the 5 and 6 bit parts are the two specific pins associated with the Direct Mode 0.5 dB and 16 dB steps.

Direct Mode
In Direct Mode the pin assigned to an unavailable step becomes a Don’t Care.

- 5 Bit, 0.5 dB LSB Pin 1, C16 on the 6 bit device, becomes inactive or Don’t Care.
- 5 Bit, 1 dB LSB Pin 20, C0.5 on the 6 bit device, becomes inactive or Don’t Care.

For the 6-bit part to emulate the 5-bit part, the “Don’t Care” pin should be held Lo.
For designs that may upgrade from 5-bit to 6-bit, the “Don’t Care” pins can be routed to zero ohm resistor initially hooked to ground, with provision to connect to controller.

Serial Mode
The 5 and 6 bit parts use a common 6 bit serial word format. The first bit, the MSB, corresponds to the 16 dB step and the LSB corresponds to the 0.5 dB step.

- 5 Bit, 0.5 dB LSB Device operates on either a 5 or 6 bit word. Optional 6th MSB is ignored and the state is set by the last 5 bits sent. If the designer anticipates a possible upgrade to a 6 bit, 31.5 dB part, then a 6 bit word preserves full software compatibility.
- 5 Bit, 1 dB LSB Device requires 6 bit word. The 0.5 dB bit is received but ignored.

1. The 5-bit 31 dB part in **serial** mode uses a similar clock/data string. Use Figure 4, noting 6 clocks are required, and five data bits position as shown.
2. The 5-bit 31 dB part in **parallel** mode uses the table in Figure 4. Note data bit pin C0.5 is unused.
3. The 5-bit 15.5 dB part in **serial** mode uses a similar clock/data string. Use Figure 5, noting 6 clocks are required, and five data bits position as shown.
4. The 5-bit 15.5 dB part in **parallel** mode uses the table in Figure 5. Note data bit pin C16 is unused.

*** NOTE: Controlling the 6th bit position in a 5-bit attenuator will put the part into an unknown state.
Sales Offices

United States
Peregrine Semiconductor Corp.
6175 Nancy Ridge Drive
San Diego, CA 92121
Tel 1-858-455-0660
Fax 1-858-455-0770

Japan
Peregrine Semiconductor K.K.
The Imperial Tower, 15th floor
1-1-1 Uchisaiwaicho, Chiyoda-ku
Tokyo 100-0011 Japan
Tel: 03-3507-5755
Fax: 03-3507-5601

Europe
Peregrine Semiconductor Europe
Bâtiment Maine
15, Rue des Quatre Vents
92380 Garches, France
Tel 33-1-4741-9173
Fax 33-1-4741-9173

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Data Sheet Identification

Advance Information
The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification
The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification
The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user’s own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine’s products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation. Copyright © 2004 Peregrine Semiconductor Corp. All rights reserved.