Product Description

The PE22100 is a push-pull driver for driving small transformers for isolated power supply applications. The PE22100 drives the primary of a center-tapped transformer, such as the 782100 family from Murata, from a 3.0V or a 5V supply to deliver an isolated power supply.

The device consists of an on-chip oscillator whose frequency is set by an external capacitor. The oscillator output is divided by two in frequency to create anti-phase clock signals that drive two power switches. The device also contains an internal current limit and thermal cutout. The PE22100 is available in a 2 x 2 x 0.5 mm QFN package and is specified for operation from –40°C to +125°C.

The PE22100 is manufactured on pSemi’s UltraCMOS® process, a patented advanced form of silicon-on-insulator (SOI) technology, offering the performance of GaAs with the economy and integration of conventional CMOS.

Features

- Push-pull driver for small transformers
- Operates off a 3.0V or 5V supply
- Adjustable switching frequency up to 2 MHz
- Current limit protection
- Over-temperature protection
- Packaging – 2 x 2 x 0.5 mm QFN

Typical Applications

- Isolated interface power supply
- Isolated data acquisition
- Industrial automation and instrumentation
- Isolated gate drivers
- Medical equipment

Copyright ©2020 pSemi Corporation, a Murata company. All rights reserved.

DOC-72248-3 (07/2020)
Table of Contents

- **Features** ... 1
- **Typical Applications** ... 1
- **Absolute Maximum Ratings** 3
- **ESD Precautions** ... 3
- **Latch-up Immunity** .. 3
- **Recommended Operating Conditions** 3
- **Typical Performance Data** 6
- **Application Performance** .. 8
- **Test Circuit 1** .. 10
- **Operation of a Push-Pull Converter** 12
- **Setting the Oscillator Frequency** 15
- **Evaluation Kit** ... 17
- **Top Marking Specification** 19
- **Notices** ... 22
Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 3. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Voltage on OUTA or OUTB</td>
<td>15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Switch current</td>
<td>350</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Enable pin voltage</td>
<td>V_REG +0.3</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Table 1. Absolute Maximum Ratings for PE22100

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 2.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body model all pins/tested to JEDEC JS–001</td>
<td>1</td>
<td>kV</td>
</tr>
</tbody>
</table>

Table 2. ESD Tolerance

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Recommended Operating Conditions

Table 3 lists the recommending operating conditions for the PE22100. Devices should not be operated outside the operating conditions listed below.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive supply voltage, VDD</td>
<td>3.0</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Positive supply current, I_DD</td>
<td>10.6</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Switch voltage on OUTA and OUTB</td>
<td>11</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Transient on OUTA or OUTB (1)</td>
<td>15</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note: (1) Max width 20 ns, max duty cycle 1:100.

Table 3. Recommended Operating Conditions for PE22100

http://www.murata.com/products/power
Electrical Specifications

Table 4 provides the PE22100 key electrical specifications at 25°C, unless otherwise specified.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum switching frequency</td>
<td>$C_{SET} = 100 \text{ pF}$</td>
<td>170</td>
<td>222.5</td>
<td>275</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum switching frequency</td>
<td>$C_{SET} = 8.2 \text{ pF}$</td>
<td>1790</td>
<td>2372</td>
<td>2954</td>
<td>kHz</td>
</tr>
<tr>
<td>Output switch resistance</td>
<td>$V_{DD} = 5\text{V} \ T = -40\degree \text{C to } +105\degree \text{C ambient, measured OUTA to GND, OUTB to GND}$</td>
<td>1</td>
<td>1.3</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Over temperature assert</td>
<td></td>
<td>+126</td>
<td>+162</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Over temperature hysteresis</td>
<td></td>
<td>3.4</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Over current protection assert</td>
<td></td>
<td>540</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Over current protection current</td>
<td>With 2V across OUTA, OUTB to GND</td>
<td>280</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Undervoltage-lockout (UVLO) assert</td>
<td></td>
<td></td>
<td></td>
<td>2.45</td>
<td>V</td>
</tr>
<tr>
<td>UVLO hysteresis</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Output rise and fall time</td>
<td>$C_{load} < 50 \text{ pF}$</td>
<td></td>
<td>5.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Internal regulated voltage at V_{REG}</td>
<td>Internal regulated voltage at V_{REG}</td>
<td>2.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Idd current shutdown</td>
<td>$V_{sw} = V_{DD} = 5\text{V, both pulled high OUTA and OUTB}$</td>
<td>1.9</td>
<td>2.9</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Enable pin high</td>
<td>Input open circuit(*)</td>
<td>2.0</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Enable pin low</td>
<td>Input pulled low(*)</td>
<td></td>
<td>0.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Enable pin current</td>
<td>Enable pin voltage = 0\text{V}</td>
<td>8.3</td>
<td>10.0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Oscillator capacitor charge/discharge current</td>
<td>$R_{SET} = 82 \text{kohms}$</td>
<td>32</td>
<td>45</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Note: () The enable pin is internally pulled up to the internal regulator. Voltages higher than VREG can damage the part.*

Table 4. Electrical Characteristics
Thermal Data
Psi-JT (ΨJT), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2).

\[Ψ_{JT} = \frac{T_J - T_T}{P} \]

where

- \(Ψ_{JT} \) = junction-to-top of package characterization parameter, °C/W
- \(T_J \) = die junction temperature, °C
- \(T_T \) = package temperature (top surface, in the center), °C
- \(P \) = power dissipated by device, Watts

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tjc</td>
<td>20</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum junction temperature(^{(1)})</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature(^{(2)})</td>
<td>245</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature(^{(3)})</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>ΨJT</td>
<td>1.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>ΘJA, junction-to-ambient thermal resistance</td>
<td>80.8</td>
<td>°C/W</td>
</tr>
<tr>
<td>ΨJB, junction-to-ambient thermal resistance</td>
<td>56.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:
1. Simulated / Measured at max TA and max power dissipation.
3. Reflow soldering - 3 reflows.

Table 5. Thermal Data for PE22100
Typical Performance Data

Figure 2 through Figure 4 show the typical performance data at VIN = 3.3V, VOUT = 3.3V, and use Murata transformer 782100/33VC.

Figure 2. Efficiency and Output Voltage, CSET = 47 pF

Figure 3. Efficiency and Output Voltage, CSET = 100 pF

Figure 4. Efficiency and Output Voltage, CSET = 220 pF

http://www.murata.com/products/power
Figure 5 through Figure 7 show the typical performance data at $V_{\text{IN}} = 3.3\text{V}$, $V_{\text{OUT}} = 5\text{V}$, and use transformer 782100/35JVC.

Figure 5. Efficiency and Output Voltage, CSET = 47 pF

Figure 6. Efficiency and Output Voltage, CSET = 100 pF

Figure 7. Efficiency and Output Voltage, CSET = 220 pF

Copyright ©2020 pSemi Corporation, a Murata company. All rights reserved.

DOC-72248-3 (07/2020)
Application Performance

Figure 8 through Figure 10 show the typical performance data at VIN = 5V, VOUT = 5V, and use transformer 782100/55JVC.

Figure 8. Efficiency and Output Voltage, CSET = 47 pF

Figure 9. Efficiency and Output Voltage, CSET = 100 pF

Figure 10. Efficiency and Output Voltage, CSET = 220 pF

NOT RECOMMENDED FOR NEW DESIGNS
Figure 11 through Figure 13 show the typical performance data at $V_{IN} = 5V$, $V_{OUT} = 5V$, and use transformer 782100/55JVC.

Figure 11. Efficiency and Output Voltage, CSET = 47 pF

Figure 12. Efficiency and Output Voltage, CSET = 100 pF

Figure 13. Efficiency and Output Voltage, CSET = 220 pF
Test Circuit 1

The test circuit is used for taking efficiency and output voltage measurements in Figure 2—Figure 13. All data is taken from the input and output voltage points and includes the diode drop.

Figure 14. Test Circuit 1(*)

Note (*): Efficiency measurements are made for the full circuit and include losses from the Schottky diodes.
Typical Operating Circuit

The circuit in Figure 15 shows a typical configuration of PE22100 to generate an isolated power supply.

![Typical Operating Circuit Diagram](image-url)
Theory of Operation

The PE22100 is a push-pull transformer driver designed for use in isolated DC-DC applications. The device includes an oscillator that drives two internal FETs via an internal gate drive circuit. The gate drive circuitry provides two complimentary output signals that turn the output transistors on and off.

The oscillator’s output frequency is set by RSET, and then internally divided by two to drive the transistors with a 50/50 duty cycle.

Operation of a Push-Pull Converter

Push-pull converters use center tapped transformers to transfer power from the primary to the secondary. The PE22100 contains two FETs to ground, represented by SW1 and SW2, which operate in two phases as shown in Figure 16.

![Figure 16. PE 22100 Operating Modes](image)

Note (*): The numbers and colors in the figure correspond to the scope plot in Figure 17.

In Phase 1, the primary is energized (●) via SW2 being switched "ON" to ground. Then, during Phase 2, when SW2 is switched "OFF", the stored energy transfers (●) to the output capacitor via D2.

In Phase 2, the primary is energized (●) via SW1 being switched "ON" to ground. Then, during Phase 1, when SW1 is switched "OFF", the stored energy transfers (●) to the output capacitor via D1.

Cycling between Phases 1 and 2 continuously ensures that current is supplied to the output capacitor.
Figure 17. Switching Waveforms of the Transformer Colors

Note (*): The switching waveforms of transformer colors correspond to the test points in Figure 15 (RSET = 82 kΩ and CSET = 47 pF).
Recommended Isolation Transformers

The transformer used with the PE22100 must have sufficient energy handling capability (i.e., E_t constant) to prevent saturation. The transformers in Table 6 have been tested to work with the PE22100.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>MURATA PART NUMBER</th>
<th>ISOLATION</th>
<th>V x T V / µS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3–3.3V</td>
<td>782100/33VC</td>
<td>4 kV</td>
<td>13</td>
</tr>
<tr>
<td>3.3–5V</td>
<td>782100/35JVC</td>
<td>4 kV</td>
<td>30</td>
</tr>
<tr>
<td>5–5V</td>
<td>782100/55JVC</td>
<td>4 kV</td>
<td>37</td>
</tr>
<tr>
<td>5–3.3V</td>
<td>782100/53VC</td>
<td>4 kV</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 6. Compatible Transformers

Current Limit and Over-Temperature Detection

The PE22100 contains a built-in current limit feature. If the current in either OUTA or OUTB to GND exceeds 600 mA, both outputs will enter over-current mode. In over-current mode, the outputs continue to switch on and off in antiphase, but at a reduced over-current mode of 320 mA.

Both outputs maintain this current limit for 4096 clock cycles, as set by CSET, or until the over-temperature detection threshold is crossed, whichever occurs first.

After 4096 clock cycles, the current limit is checked again.

- If the current limit is below the threshold, the PE22100 exits current limit mode.
- If the current limit is above the current limit threshold, the PE22100 enters current limit mode for another 4096 clock cycles.

If the die temperature exceeds +140°C, the internal FETs switch off, forming an open circuit at OUTA and OUTB. The temperature detector has an approximate hysteresis of +3.4°C. As the temperature falls below the threshold, OUTA and OUTB resume normal operation.

http://www.murata.com/products/power

Copyright ©2020 pSemi Corporation, a Murata company. All rights reserved.
DOC-72248-3 (07/2020)
Setting the Oscillator Frequency

The oscillator is based on a relaxation oscillator charging an external capacitor CSET. The charge and discharge current are set by the RSET value (see Figure 18). This forms an oscillator that charges and discharges capacitor CSET between 1.0V and 1.5V.

![Figure 18. Internal Oscillator Structure](image)

To calculate the oscillator frequency at CSET:

\[
\text{Frequency} = \frac{37.5 \, \mu\text{A}}{\text{CSET}}
\]

For example, the oscillator frequency at CSET for an external capacitor of 100 pF will be:

\[
\text{Frequency} = \frac{37.5 \, \mu\text{A}}{100 \times 10^{-12}} = 375 \, \text{kHz}
\]

Internally, the PE22100 divides this value by a factor of 2, for an internal oscillator frequency of \(375 / 2 = 187.5 \, \text{kHz}\). This is the frequency that drives the output transistors.

The PE22100 can be driven up to rates of 2 MHz at CSET. As CSET is decreased, be sure external PCB stray capacitances do not introduce errors into the oscillator frequency.
Applications Information

The PE22100 often is used to generate isolated supplies for transceivers in isolated interface applications, as shown in Figure 19. In this application, the output is further regulated by a linear regulator to provide an isolated regulated supply for the transceivers. The efficiency loss due to the linear regulator should be taken into account for the system efficiency calculation. At low load currents, switching transitions from the primary side can be capacitively coupled to the secondary side. Adding a Zener diode across the output voltage will clamp this voltage.

![Figure 19. Typical Application](http://www.murata.com/products/power)
Evaluation Kit

The PE22100 evaluation board (EVB) is designed on a 2.54 mm pitch to allow customers to evaluate the PE22100 on plug board.

The EVB is assembled with a PE22100 driving a 782100/55JVC transformer, which is rectified by D1 and D2 to generate an isolated supply voltage.

To change the operating frequency, replace C6.

![Figure 20. Evaluation Kit Layout for PE22100](image)
Pin Information

This section provides pinout information for the PE22100. Figure 21 shows the pin map of this device for the available package. Table 7 provides a description for each pin.

![Figure 21: Pin Configuration (Top View)](image)

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>PIN NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 12</td>
<td>OUTA</td>
<td>Power switch output A connection</td>
</tr>
<tr>
<td>2, 8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>CSET</td>
<td>Connect an external capacitor to ground to set the oscillator frequency.</td>
</tr>
<tr>
<td>4</td>
<td>EN</td>
<td>Enable pin active high internally pulled up. Either leave floating or drive a logic low to disable the part. Do not drive EN above VREG.</td>
</tr>
<tr>
<td>5</td>
<td>VREG</td>
<td>Internal regulator bypass should be connected to 470 pF to ground.</td>
</tr>
<tr>
<td>6</td>
<td>RSET</td>
<td>Connect an external 82 kΩ to ground.</td>
</tr>
<tr>
<td>7</td>
<td>VDD</td>
<td>Positive input for the chip to connect to 3.3V or 5V</td>
</tr>
<tr>
<td>9, 10</td>
<td>OUTB</td>
<td>Power switch output B connection</td>
</tr>
<tr>
<td>11</td>
<td>SGND</td>
<td>Power FET ground connection is a high power path and should be connected to the same potential as GND.</td>
</tr>
<tr>
<td>Pad</td>
<td>GND</td>
<td>Exposed pad: Ground for proper operation.</td>
</tr>
</tbody>
</table>

Table 7. Pin Descriptions for PE 22100
Packaging Information

This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE22100 in the 2 x 2 x 0.5 mm QFN package is MSL1.

Package Drawing

![Package Mechanical Drawing for 2 x 2 x 0.5 mm QFN](image)

Top Marking Specification

![Top Marking Specification](image)

- PP = Pin 1 indicator
- YY = Last two digits of assembly year
- WW = Assembly work week
- ZZ = Assembly lot code (maximum two characters)

http://www.murata.com/products/power
Tape and Reel Specification

Figure 24. Tape and Reel Specifications for 2 x 2 x 0.5 mm QFN

Notes:
1. 10 Sprocket hole pitch cumulative tolerance ±0.2
2. Camber in compliance with EIA 481
3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K0</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>2.00 ± 0.1/-0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>1.0 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1.75 ± 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3.50 ± 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>2.00 ± 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.30 ± 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0</td>
<td>8.00 ± 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Information

Table 8 lists the available ordering codes for the PE22100 as well as available shipping methods.

<table>
<thead>
<tr>
<th>ORDER CODES</th>
<th>DESCRIPTION</th>
<th>PACKAGING</th>
<th>SHIPPING METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE22100A-X</td>
<td>PE22100 Transformer driver</td>
<td>2 x 2 mm QFN</td>
<td>500 units/T&R</td>
</tr>
</tbody>
</table>

Table 8. Order Codes for PE 22100
Notices

⚠️ CAUTION

Limitation of Applications
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data-processing equipment

Application of similar complexity and/or reliability requirements to the applications listed in the above

⚠️ NOTE
Please make sure that your product has been evaluated and confirmed against your specifications when our product is mounted to your product.

All the items and parameters in this approval sheet for product specification have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment agreed upon between you and us. You are requested not to use our product deviating from such agreement.

If you have any concerns about materials other than those listed in the RoHS directive, please contact us.
Document Categories

Advance Information
The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification
The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification
The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Product Brief
The datasheet contains summary product information.

Sales Contact
For additional information, contact Sales at sales@psemi.com.

Disclaimers
The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user’s own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi’s products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement
pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark
©2020 pSemi Corporation, a Murata company. All rights reserved. The pSemi name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of pSemi Corporation.

http://www.murata.com/products/power