

Product Specification

PE613010

UltraCMOS[®] SPST Tuning Control Switch, 100–3000 MHz

Features

- Very low on-resistance of 1.2Ω
- Low insertion 655
 - 0.20 dB @ 900 MHz
 - 0.40 dB @ 1900 MHz
- High power handling: 38 dBm (50Ω)
 - Wide power supply range (2.3V to 4.8V)
 - High ESD tolerance of 2 kV HBM
- Applications include:
 - Open and closed-loop tunable antennas for 2G/3G/4G
 - Tunable matching networks
 - Tunable filter networks
 - Bypassing applications
 - RFID readers

Figure 2. Package Type 10-lead $2 \times 2 \times 0.55$ mm QFN

Product Description

The PE613010 is an SPST tuning control switch based on Peregrine's UltraCMOS[®] technology. This highly versatile switch supports a wide variety of tuning circuit topologies with emphasis on impedance matching and aperture tuning applications. PE613010 features low onresistance and insertion loss from 100 to 3000 MHz.

PE613010 offers high RF power handling and ruggedness, while meeting challenging harmonic and linearity requirements enabled by Peregrine's HaRP[™] technology. With single-pin low voltage CMOS control, all decoding and biasing is integrated on-chip and no external bypassing or filtering components are required.

UltraCMOS tuning devices feature ease of use while delivering superior RF performance. With built-in bias voltage generation and ESD protection, tuning control switches provide a monolithically integrated tuning solution for demanding RF applications.

©2013–2014 Peregrine Semiconductor Corp. All rights reserved.

Table 1. Electrical Specifications @ 25°C, V_{DD} = 2.75V

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin #	Pin Name	Description
1	RF-	Negative RF Port ¹
2	RF–	Negative RF Port ¹
3	GND	Ground ²
4	V _{DD}	Power Supply Pin
5	GND	Ground ²
6	GND	Ground ²
7	V1	Switch control input, CMOS logit level
8	RF+	Positive RF Port ¹
9	RF+	Positive RF Port ¹
10	GND	Ground ²
11	GND	Exposed Ground Reddle ²

Notes: 1. Multiple RF pins are provided for hexibility. They can be tied together for optimal RF performance, or used inflividually (leave unused pin floating).
2. For optimal performance, incompleted tying Pins 3. 5, 6, 10, 11 together on PCB.

Moisture Sensitivity Level

The Moisture consitivity Level rating for the PE613010 in the 10-lead $2 \times 2 \times 0.55$ mm QFN package is MSL1.

Table 3. Truth Table

State	V1
Switch OFF	0
Switch ON	1

Table 4. Operating Ranges

Parameter	Min	Тур	Max	Unit
V _{DD} Supply Voltage	2.30	2.75	5.50	V
I_{DD} Power Supply Current (V _{DD} = 2.75V, 25°C)		140	-	μA
V _{IH} Control Voltage High	12	1.8	3.1	V
VIL Control Voltage Low	0	0	0.57	V
Peak Operating RF Voltage ^{1,2} 100 MHz–3 GHz	2		25 ³	Vpk
Top Operating Temperature Range	-40	+25	+85	°C

Notes: 1. Between all RF ports, anotrop RF ports to GND.
2. Pulsed RF input duty cycle of 50% and 4620 μs, measured per 3GPP TS 45.005.
3. RF input power of %8 dBm (50Ω, SW_{ON}) and 32 dBm (50Ω, SW_{OFF}).

Table 5. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Unit
VD	Supply Voltage	-0.3	5.5	V
VCTR	Digital Input Voltage (V1)	-0.3	3.6	V
T _{ST}	Storage Temperature Range	-65	+150	°C
V _{ESD,HBM}	H3M ESD Voltage, All Pins*		2000	V
	Symbol VDb VCTH IST VESD,HBM	Symbol Parameter/Conditions Vpb Supply Voltage VcrR Digital Input Voltage (V1) Tst Storage Temperature Range V _{ESD,HBM} HBM ESD Voltage, All Pins*	SymbolParameter/ConditionsMinV_DbSupply Vehage-0.3V_CTRDigital Inpat Voltage (V1)-0.3I_STStorage Temperature Range-65V_ESD,HEMHBM ESD Voltage, All Pins*	SymbolParameter/ConditionsMinMaxV_DbSupply Veltage-0.35.5V_CTRDigital Input Voltage (V1)-0.33.6T_STStorage Temperature Range-65+150V_ESD,HEMHeM ESD Voltage, All Pins*2000

Note: * Human Body Model (MIL_STD 883 Method 3015.7).

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Equivalent Circuit Model Description

The Equivalent Circuit Model includes all parasitic elements and is accurate in switch on and switch off states, reflecting physical circuit behavior accurately and providing very close correlation to measured data. It can easily be used in circuit simulation programs.

C_s represents switch core capacitance between RF+ and RF- ports in the SW_{OFF} state. The parameter R_S represents the Equivalent Series Resistance (ESR) of the switch core.

Parasitic inductance due to circuit and package is modeled as L_S. C_P represents the circuit and package parasitics from RF ports to GND.

R_{sw} RF+ C Cc R_P

Table 6. Equivalent Circuit Model Parameters

nodeled as L_s . C_P represents the circuit and	Parameter	Equation (SW=0 for OPE and SW=1 for ON)	Unit
ackage parasitics from RF ports to GND.	Cs		pF
	CP	0.65	pF
	Paw	it SW == 1 then 1.2 else 100e3	Ω
		6	Ω
		0.35	nH
X	$\langle \langle \langle \rangle \rangle$	2 ×	
\sim	΄. λ΄		
	\mathbf{X}		
A. V.			
	•		
$O_{I_{2}} \rightarrow I$			
X `			
\cap			
7			
•			

Figure 4. Equivalent Circuit Model Schematic

Evaluation Board

The 101-0738 Evaluation Board (EVB) was designed for accurate measurement of the tuning switch impedance and loss using 2 Port Series (J4, J5) configuration. Three calibration standards are provided. The open (J2) and short (J1) standards (104 ps delay) are used for performing port extensions and accounting for electrical length and transmission line loss. The Thru (J8, J10) standard can be used to estimate PCB transmission line loss for scalar de-embedding.

The board consists of a 4 layer stack with 2 outer layers made of Rogers 4350B ($\varepsilon_r = 3.48$) and 2 inner layers of FR4 ($\varepsilon_r = 4.80$). The total thickness of this board is 62 mils (1.57 mm). The inner layers provide a ground plane for the NOT REPERENT transmission lines. Each transmission line is designed using a coplanar waveguide with

Figure 5. Evaluation Board

PRT-08405

Figure 6. Evaluation Board Schematic

Figure 6. Package Drawing

10-lead $2 \times 2 \times 0.55$ mm

Figure 8. Tape and Reel Specifications

Sales and Contact Information

For sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. *Preliminary Specification*: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. *Product Specification*: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

©2013–2014 Peregrine Semiconductor Corp. All rights reserved.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. The Peregrine name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE

The Peregrine name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.