
## **PE4462**

## **Product Description**

The PE4462 is a high-performance monolithic CMOS switch matrix with integrated power splitters for non-blocking operation. Any of the four RF inputs can be connected to one or more of the six RF outputs simultaneously. With its excellent isolation, small package, and simple interface, the PE4462 is ideal for receiver switching in dual-mode, dual-band base stations.

The PE4462 is manufactured in Peregrine's patented Ultra-Thin Silicon (UTSi©) CMOS process, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram



# High Isolation, Non-Blocking 4x6 RF Matrix Switch

#### **Features**

- Three inputs at 1710 2025 MHz
- One input at 824 924 MHz
- High isolation: 43 dB @ 2 GHz
- High input 1 dB compression point of +31 dBm
- High input IP3 of +50 dBm
- Single 3-volt nominal power supply
- Less than 10 uA current drain
- Simple SPI control bus
- Small 7x7 mm MLPQ package

Figure 2. Package Type

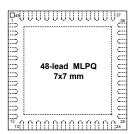



Table 1. Electrical Specifications @ +25 °C ( $Z_S = Z_L = 50 \Omega$ )

| Parameter                | Conditions                                     | Minimum | Typical                      | Maximum | Units |
|--------------------------|------------------------------------------------|---------|------------------------------|---------|-------|
| Supply Voltage           |                                                | 2.7     | 3.0                          | 3.3     | V     |
| Supply Current           |                                                |         | 1                            | 10      | uA    |
| Insertion Loss           | 824 – 924 MHz<br>1710 – 2025 MHz               |         | 11.7<br>13.5                 |         | dB    |
| Insertion Loss Flatness  | 824 – 924 MHz<br>1710 – 2025 MHz               |         | <u>+</u> 0.4<br><u>+</u> 0.4 |         | dB    |
| Insertion Loss Variation | Any input to any output                        |         | <u>+</u> 0.4                 |         | dB    |
| Isolation                | Output to output port with uncommon input port |         | 43                           |         | dB    |
| Splitter Isolation       | Output to output port with common input port   |         | 25                           |         | dB    |



Table 2. Electrical Specifications @ +25 °C -- Continued (Zs = ZL = 50  $\Omega$ )

| Parameter                  | Conditions                       | Minimum | Typical | Maximum | Units     |
|----------------------------|----------------------------------|---------|---------|---------|-----------|
| Input 1 dB Compression Pt. |                                  |         | 31      |         | dBm       |
| Input IP3                  |                                  |         | 50      |         | dBm       |
| Input Return Loss          | 824 – 924 MHz<br>1710 – 2025 MHz |         | 9<br>6  |         | dB<br>dB  |
| Output Return Loss         | 824 – 924 MHz<br>1710 – 2025 MHz |         | 11<br>7 |         | dB<br>dB  |
| Switching Time             | 50% CTL to 90/10% RF             |         | 180     |         | ns        |
| Video Feedthrough          |                                  |         | 15      |         | $mV_{pp}$ |
| SPI Clock                  |                                  |         | 5       | 10      | MHz       |

Figure 3. Detailed Functional Schematic Diagram

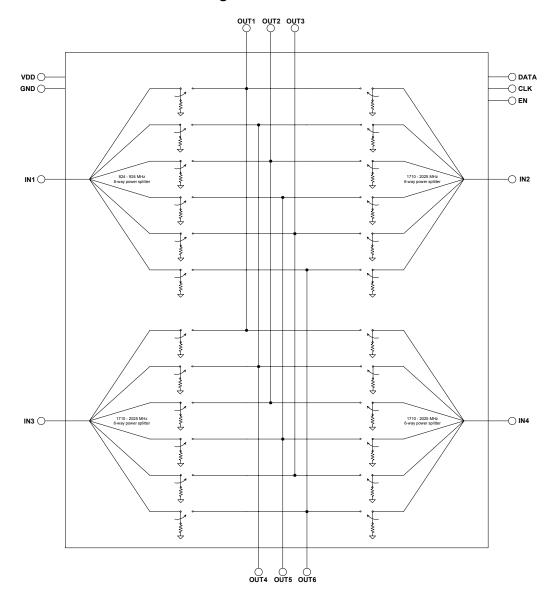
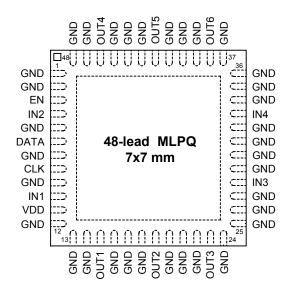






Figure 4. Pin Configuration



**Table 3. Pin Descriptions** 

| Pin<br>No. | Pin<br>Name    | Description                                                                                                                |
|------------|----------------|----------------------------------------------------------------------------------------------------------------------------|
| 3          | EN<br>(ENABLE) | Serial register is loaded into parallel register on rising edge of ENABLE control input. RF switches are now reconfigured. |
| 4          | IN2            | RF input number 2 (1710 – 2025 MHz).                                                                                       |
| 6          | DATA           | DATA is loaded LSB first into the 32-bit serial shift register on the falling edge of CLK (CLOCK).                         |
| 8          | CLK<br>(CLOCK) | Falling edge of CLK loads one bit of DATA into the 32-bit serial shift register. Nominal CLK frequency is 5 MHz.           |
| 10         | IN1            | RF input number 1 (824 – 924 MHz).                                                                                         |
| 11         | VDD            | Supply voltage input for the matrix switch. This supply pin must be AC shunted to GND as close as possible to the pin.     |
| 15         | OUT1           | RF output number 1.                                                                                                        |
| 19         | OUT2           | RF output number 2.                                                                                                        |
| 23         | OUT3           | RF output number 3.                                                                                                        |
| 28         | IN3            | RF input number 3 (1710 – 2025 MHz).                                                                                       |
| 33         | IN4            | RF input number 4 (1710 – 2025 MHz).                                                                                       |
| 38         | OUT6           | RF output number 6.                                                                                                        |
| 42         | OUT5           | RF output number 5.                                                                                                        |
| 46         | OUT4           | RF output number 4.                                                                                                        |
|            |                |                                                                                                                            |

All other pins and the ground paddle must be grounded. (PINS 1, 2, 5, 7, 9, 12-14, 16-18, 20-22, 24-27, 29-32, 34-37, 39-41, 43-45, 47-48 are GND pins)

**Table 4. Absolute Maximum Ratings** 

| Symbol          | Parameter/Conditions              | Min  | Max     | Units |
|-----------------|-----------------------------------|------|---------|-------|
| VDD             | Supply voltage                    | -0.3 | 4.0     | V     |
| T <sub>ST</sub> | Storage temperature range         | -65  | 150     | °C    |
| T <sub>OP</sub> | Operating temperature range       | -40  | 85      | °C    |
| Vi              | Maximum input voltage             | -0.3 | VDD+0.3 | V     |
| VESD            | ESD voltage (Human<br>Body Model) |      | 250     | V     |

### **Electrostatic Discharge (ESD) Precautions**

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in table.

#### Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

#### **Device Functional Considerations**

The PE4462 offers very high isolation only when care is taken in the PCB layout. Ground fill should isolate all of the RF traces from one another, and the exposed paddle should be soldered to the ground plane.

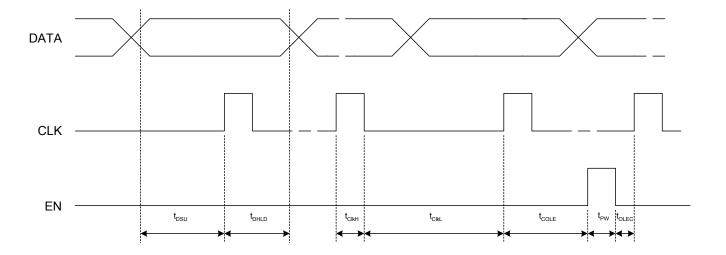
All of the RF pins must be DC blocked for proper operation.



#### **SPI Programming**

The serial programming interface consists of three CMOS compatible signals; input programming data (DATA), the serial bus clock (CLK) and a Latch Enable (EN) control line. A 32-bit data word is serially clocked LSB (B0) first into a control register on the leading edge of the serial bus clock and then captured in the control latch by taking the EN line high (EN=1) and then subsequently low (EN=0).

Each bit (except the unused bits marked by X) controls one RF switch and can connect an input to a selected output by programming that bit high (B<sub>(0-31)</sub> = 1) as shown in Table 5. The serial bus timing is shown in Figure 5, *Serial Programming Interface Timing Diagram*, and Table 6, *Serial Interface AC Characteristics*.


For example if bit B3 is programmed high (B3 = 1), then RF Input 1 is connected to RF Output 4.

**Table 5. Programming Data Words** 

| DATA Bit           | B31            | B30 | B29 | B28 | B27 | B26            | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 |
|--------------------|----------------|-----|-----|-----|-----|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                    | RF Input 4 To: |     |     |     |     | RF Input 3 To: |     |     |     |     |     |     |     |     |     |     |
| RF Output<br>Port: | Х              | Х   | 6   | 5   | 4   | 3              | 2   | 1   | Х   | Х   | 6   | 5   | 4   | 3   | 2   | 1   |

| DATA Bit           | B15            | B14 | B13 | B12 | B11 | B10            | В9 | B8 | В7 | В6 | B5 | В4 | В3 | B2 | B1 | В0 |
|--------------------|----------------|-----|-----|-----|-----|----------------|----|----|----|----|----|----|----|----|----|----|
|                    | RF Input 2 To: |     |     |     |     | RF Input 1 To: |    |    |    |    |    |    |    |    |    |    |
| RF Output<br>Port: | х              | Х   | 6   | 5   | 4   | 3              | 2  | 1  | Х  | Х  | 6  | 5  | 4  | 3  | 2  | 1  |

Figure 5. Serial Programming Interface Timing Diagram



File No. 70/0081~00A  $\,$  | UTSi  $\,$ ® CMOS RFIC SOLUTIONS



**Table 6. Serial Interface AC Characteristics** 

 $V_{DD}$  = 3.0 V, -40° C <  $T_A$  < 85° C, unless otherwise specified

| Symbol            | Parameter                              | Min | Max | Unit |
|-------------------|----------------------------------------|-----|-----|------|
| f <sub>Clk</sub>  | Serial data clock frequency (Note 1)   |     | 10  | MHz  |
| t <sub>ClkH</sub> | Serial clock HIGH time                 | 60  |     | ns   |
| t <sub>ClkL</sub> | Serial clock LOW time                  | 60  |     | ns   |
| t <sub>DSU</sub>  | Sdata set-up time to Sclk rising edge  | 20  |     | ns   |
| t <sub>DHLD</sub> | Sdata hold time after Sclk rising edge | 20  |     | ns   |
| t <sub>PW</sub>   | OLE pulse width                        | 60  |     | ns   |
| t <sub>cwr</sub>  | Sclk rising edge to S_WR rising edge   | 60  |     | ns   |
| t <sub>OLEC</sub> | OLE falling edge to Sclk rising edge   | 60  |     | ns   |

Note 1: f<sub>Clk</sub> is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 5 MHz to verify fclk specification.

Figure 6. High Frequency System Application

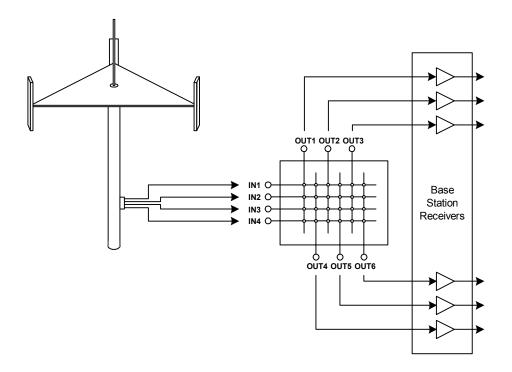





Figure 7. Insertion Loss - Low Band

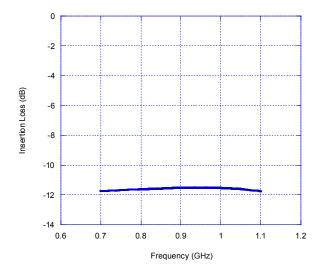



Figure 8. Input 1 dB Compression Point & IIP3

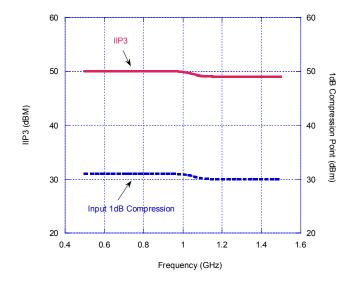



Figure 9. Insertion Loss - High Band

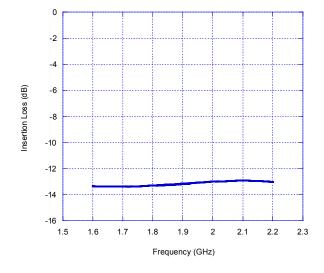



Figure 10. Output to Output Isolation – Uncommon Input





Figure 11. Output to Output Isolation – Low Band Common Input

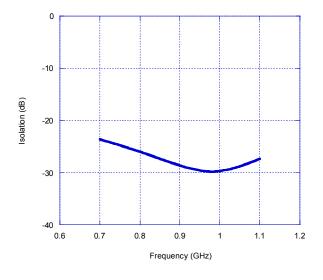



Figure 12. Output to Output Isolation – High Band Common Input

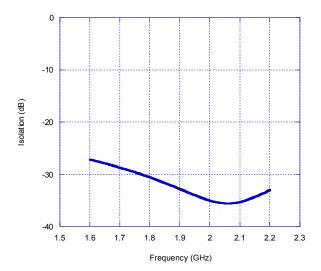



Figure 13. Input to Input Isolation – Low Band to High Band

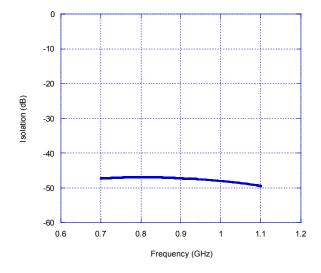



Figure 14. Input to Input Isolation – High Band to High Band

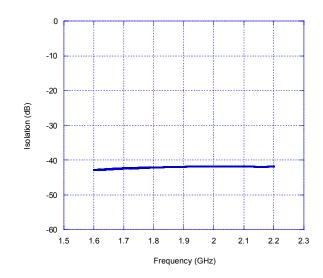





Figure 15. On-Off Isolation – Low Band

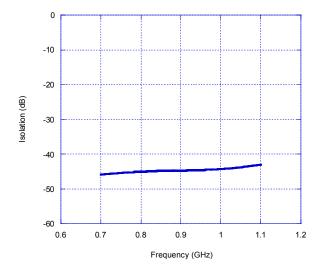



Figure 16. On-Off Isolation - High Band



Figure 17. Input Return Loss - Low Band

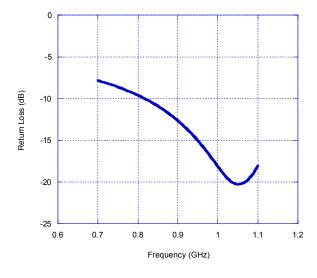



Figure 18. Input Return Loss - High Band

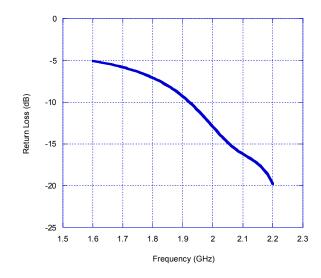
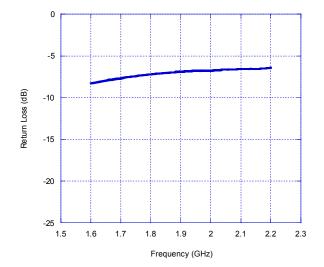
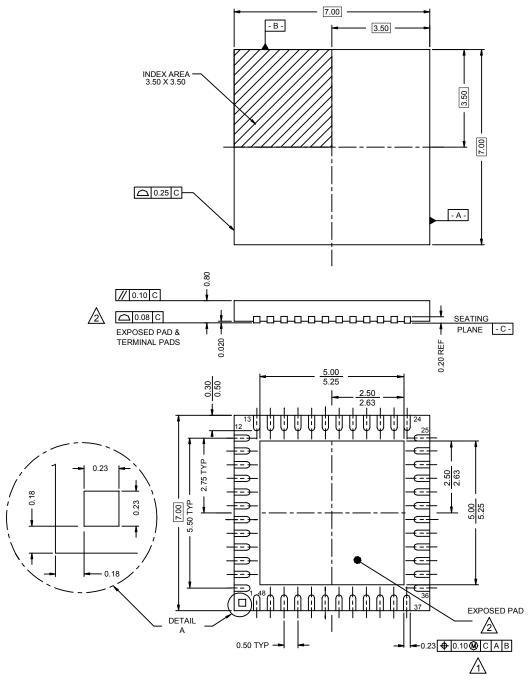






Figure 19. Output Return Loss – Low Band




Figure 20. Output Return Loss - High Band





## Figure 21. Package Drawing

48 Lead 7x7 mm MLPQ



- 1. DIMENSION APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 FROM TERMINAL TIP.
- 2. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.



## **Table 7. Ordering Information**

| Order<br>Code | Part Marking | Description           | Package             | Shipping<br>Method |
|---------------|--------------|-----------------------|---------------------|--------------------|
| 4462-01       | PE4462       | PE4462-48MLP7X7-4000C | 48-lead 7x7 mm MLPQ | 4000 pcs. / T&R    |
| 4462-02       | PE4462       | PE4462-48MLP7X7-52A   | 48-lead 7x7 mm MLPQ | 52 pcs. / Tube     |
| 4462-00       | PE4462-EK    | PE4462-48MLP7X7-EK    | Evaluation Board    | 1 / Box            |

#### Sales Offices

#### **United States**

#### Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

#### **Europe**

#### **Peregrine Semiconductor Europe**

Bâtiment Maine 13-15 rue des Quatre Vents F- 92380 Garches Tel 33-1-47-41-91-73 Fax 33-1-47-41-91-73

#### Japan

#### Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 03-3507-5755

Fax: 03-3507-5601

#### Australia

#### **Peregrine Semiconductor Australia**

8 Herb Elliot Ave. Homebush, NSW 2140 Australia

Tel: 011-61-2-9763-4111 Fax: 011-61-2-9746-1501

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

#### **Data Sheet Identification**

#### Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

#### Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

#### **Product Specification**

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation. Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.