

# PE826C31

# **Product Description**

The PE826C31 is a high performance monolithic CMOS RS-422 line driver. Its operating supply range is 3.0 to 3.6 V, with an output signal overvoltage range of 0 – 6 V. The PE826C31 offers higher speed and lower power than other RS-422 driver types. It is packaged in standard DIP and flat pack options and is ideal for stringent military applications.

The PE826C31 is manufactured in Peregrine's patented Ultra Thin Silicon (UTSi®) CMOS process, offering the performance of GaAs with the low power, economy and integration of conventional CMOS.

# Quad RS-422 Differential Line Driver

#### **Features**

- High-speed operation: < 10 nS typical
- Low power: < 150 uA typical (unloaded)
- 3.3 V operation
- Standard packaging: 16-lead DIP and flat pack
- Pin Compatible with Existing Industry Products

Figure 1. Package Drawing

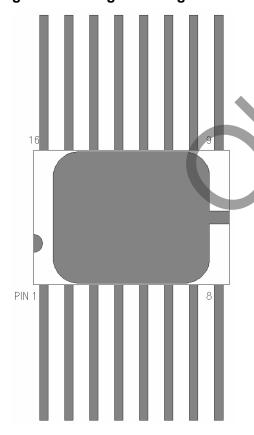
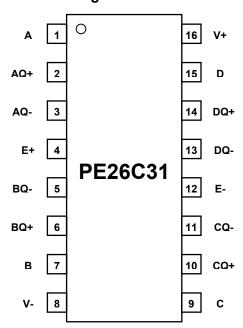






Figure 2. Pin Configuration



**Table 1. Pin Descriptions** 

| Pin<br>No. | Pin<br>Name | Description                   |  |  |
|------------|-------------|-------------------------------|--|--|
| 1          | Α           | Channel A Input               |  |  |
| 2          | AQ+         | Channel A Noninverting Ouput  |  |  |
| 3          | AQ-         | Channel A Inverting Output    |  |  |
| 4          | E+          | Enable, active high           |  |  |
| 5          | BQ-         | Channel B Inverting Output    |  |  |
| 6          | BQ+         | Channel B Noninverting Output |  |  |
| 7          | В           | Channel B Input               |  |  |
| 8          | V-          | Ground Pin                    |  |  |
| 9          | С           | Channel C Input               |  |  |
| 10         | CQ+         | Channel C Noninverting Output |  |  |
| 11         | CQ-         | Channel C Inverting Ouput     |  |  |
| 12         | E-          | Enable, active low            |  |  |
| 13         | DQ-         | Channel D Inverting Output    |  |  |
| 14         | DQ+         | Channel D Noninverting Output |  |  |
| 15         | D           | Channel D Input               |  |  |
| 16         | V+          | Supply Pin                    |  |  |

**Table 2. Recommended Operating Conditions** 

| Symbol           | Parameter/Conditions                     | Min | Max  | Units |
|------------------|------------------------------------------|-----|------|-------|
| V+               | Supply voltage                           | 3.0 | 3.6  | V     |
| T <sub>OP</sub>  | Operating temperature range              | -55 | 125  | °C    |
| VIN              | Maximum input voltage                    | 0   | (V+) | V     |
| VOUT             | Maximum output voltage                   | 0   | (V+) | V     |
| IOUT             | Maximum output current                   | -50 | 50   | mA    |
| V <sub>ESD</sub> | ESD Voltage Human<br>Body Model (Note 1) |     | 1000 | V     |

Note 1: Periodically tested not 100% sampled. Tested per MIL-STD-883 M3015 C2.

### **Electrostatic Discharge (ESD) Precautions**

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 2.

# Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

#### **Device Functional Considerations**

The PE826C31 operates at high switching speeds. In order to obtain maximum performance, it is crucial that pin 16 be supplied with a bypass capacitor to ground (pin 8).

Table 3. Truth Table

| E+ | E- | Data | Q+ | Q- |
|----|----|------|----|----|
| L  | Н  | Х    | Z  | Z  |
| Н  | Х  | L    | L  | Н  |
| Х  | L  |      |    |    |
| Н  | Х  | Н    | Н  | L  |
| Х  | L  |      |    |    |



## **Table 4. Electrical Specifications**

 $-55^{\circ}$  C < Tcase < 125 $^{\circ}$  C, 3.0 V < V+ < 3.6 V

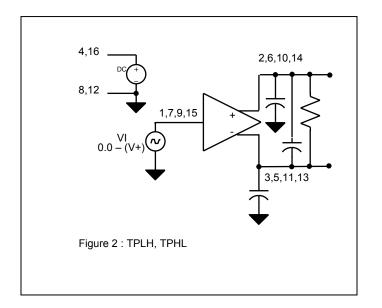
| Param | Description                        | Conditions                            | Pin(s)              | Min  | Тур    | Max             | Units |
|-------|------------------------------------|---------------------------------------|---------------------|------|--------|-----------------|-------|
| VD1   | Output Differential Voltage        | No load                               | AQ+, AQ-, BQ+, BQ-, |      | 3.0    | 3.6             | V     |
| VD2   | Output Differential Voltage        | RL=100 Ω, Fig DC1                     | CQ+, CQ-, DQ+, DQ-  | 1.9  | 2.3    |                 | V     |
| DVD2  | Output Differential Voltage Change | IOUT 0 – 20mA, Fig DC1                | 1                   | -0.4 | 0      | 0.4             | V     |
| VCM   | Common Mode Voltage                | RL=100 Ω, Fig DC1                     | 1                   |      | 1.5    | 2.0             | V     |
| DVCM  | Common Mode Voltage Change         | RL=100 Ω, Fig DC1                     | 1                   | -0.4 | 0      | 0.4             | V     |
| IOZH  | Tristate Output Leakage (H)        | VOUT = V+, disabled                   | 1                   | -5   | -0.1   |                 | uA    |
| IOZL  | Tristate Output Leakage (L)        | VOUT = 0.0 V, disabled                | 1                   |      | 0.1    | 5               | uA    |
| IOSC  | Output Short Circuit Current       | VOUT = 0.0 V, Enabled Q=H             |                     | -30  | -70    | -150            | mA    |
| IOFFH | Output Leakage Current (H)         | VOUT=6.0V,V+ and all inputs<br>= 0.0V |                     |      | 1      | 100             | uA    |
| IOFFL | Output Leakage Current (L)         | VOUT=-0.25V,V+ and all inputs = 0.0V  |                     | -100 | -1     |                 | uA    |
| VOH   | Output High Voltage                | lout=-20mA                            |                     | 2.0  | 2.4    |                 | ٧     |
| VOL   | Output Low Voltage                 | lout=20mA                             |                     |      | 0.1    | 0.5             | V     |
| VIH   | Input threshold H                  | Vdd=3.6V (VIHMIN=0.7*VDD)             | A, B, C, D, E+, E-  | 2.5  |        |                 | ٧     |
| VIL   | Input Threshold L                  | Vdd=3.0V (VILMAX=0.3*VDD)             | A, B, C, D, E+, E-  |      |        | 0.9             | V     |
| IIH   | Input Lkg Current                  |                                       | A, B, C, D, E+, E-  | -1   |        | 1               | uA    |
| IIL   | Input Lkg Current                  |                                       | A, B, C, D, E+, E-  | -1   |        | 1               | uA    |
| VIKL  | Input Clamp Diode Voltage          | IIN=-20 mA                            | A, B, C, D, E+, E-  | -1.5 |        |                 |       |
| VIKH  | Input Clamp Diode Voltage          | IIN=20 mA                             | A, B, C, D, E+, E-  |      |        | (V+) +<br>1.5 V |       |
| ICC   | Supply Current                     | No load, Inputs = 0 V or V+           | V+                  |      | 120 uA | 150 uA          |       |

Notes:

- (1) "Line" pins refer to AQ-, AQ+, BQ-, BQ+, CQ-, CQ+, DQ-, DQ+, differential outputs
  (2) "Digital Input" or "Enable" pins refer to E+, E(3) "Digital Input" pins refer to A, B, C, D
  (4) Output Short Circuit not intended to imply continuous operation



# **Table 5. Electrical Specifications**


-55° C < Tcase < 125° C, 3.0 V < V+ < 3.6 V

| Param | Description           | Conditions      | Pin(s)       | Min | Тур | Max | Units |
|-------|-----------------------|-----------------|--------------|-----|-----|-----|-------|
| TPHL  | Prop Delay H-L        | RL=100 CL=50 pF | AQ+,         | 3   | 9   | 15  | nS    |
| TPLH  | Prop Delay H-L        |                 | AQ-,<br>BQ+, | 3   | 9   | 15  | nS    |
| TSK1  | Prop Delay Q+/Q-      | BQ-,            |              | -3  | 0   | 3   | nS    |
| TSK2  | Prop Delay Skew Ch/Ch |                 | CQ+,<br>CQ-, | -3  | 0   | 3   | nS    |
| TRISE | Rise Time 20%/80%     |                 | DQ+,         |     | 3   | 10  | nS    |
| TFALL | Fall Time 20%/80%     |                 | DQ-          |     | 3   | 10  | nS    |
| TPHZ  | Prop Delay H-Z        |                 |              |     | 12  | 20  | nS    |
| TPZH  | Prop Delay Z-H        |                 |              |     | 12  | 20  | nS    |
| TPLZ  | Prop Delay L-Z        |                 |              |     | 10  | 20  | nS    |
| TPZL  | Prop Delay Z-L        |                 |              |     | 10  | 20  | nS    |





Figure 3. TPLH, TPHL Test Circuit Block Diagram



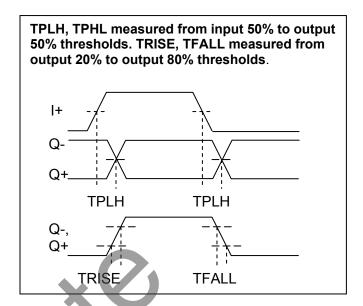
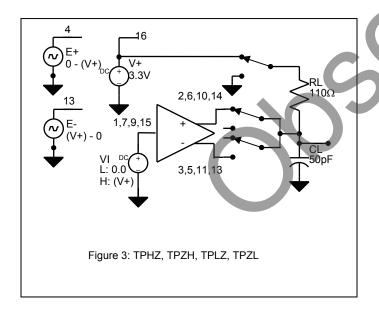
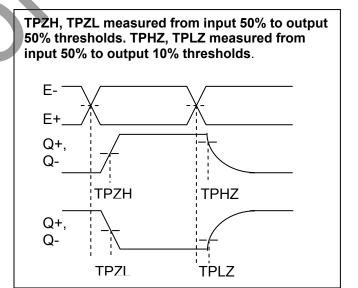





Figure 4. TPLZ, TPZL, TPHZ, TPZH Test Circuit Block Diagram







# **Table 6. Ordering Information**

| Order<br>Code | Part Marking | Description          | Package           | Shipping<br>Method |
|---------------|--------------|----------------------|-------------------|--------------------|
| 826C31-01     | PE826C31-01  | Engineering Samples  | Die               | 1/Box              |
| 826C31-11     | PE826C31-11  | Production Unit, DIP | 16-pin DIP        | 25/Tray            |
| 826C31-21     | PE826C31-21  | Production Unit, FP  | 16-lead FLAT PACK | 25/Tray            |
| 826C31-00     | PE826C31-EK  | Evaluation Kit       | Evaluation Board  | 1/Box              |



# PEREGRINE SEMICONDUCTOR

#### **Sales Offices**

#### **United States**

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

### **Europe**

#### **Peregrine Semiconductor Europe**

Aix-En-Provence Office Parc Club du Golf, bat 9 13856 Aix-En-Provence Cedex 3 France Tel 33-0-4-4239-3360 Fax 33-0-4-4239-7227

#### Japan

#### Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel 81-3-3502-5211 Fax 81-3-3502-5213

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

# **Data Sheet Identification**

#### Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

## Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

#### **Product Specification**

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine Space & Defense products are subject to export restrictions under both EAR (US Dept Of Commerce) and ITAR (US Dept Of State). Contact Peregrine for current export restrictions, if any.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, SEL Safe, the Peregrine logotype, Peregrine Semiconductor Corp. and UTSi are registered trademarks of Peregrine Semiconductor Corp. Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.