

PE826C32

Product Description

The PE826C32 is a high performance monolithic CMOS RS-422 line receiver. Its operating supply range is 3.0 to 3.6V, with an input signal common mode range of +/-10V. The PE826C32 offers higher speed and lower power than other RS-422 receiver types. It is packaged in standard DIP and flat pack options and is ideal for stringent military applications.

The PE826C32 is manufactured in Peregrine's patented Ultra Thin Silicon (UTSi®) CMOS process, offering the performance of GaAs with the low power, economy and integration of conventional CMOS.

Quad RS-422 Differential Line Receiver

Features

- High-speed operation: < 15 nS typical
- Low power: < 9 mA typical
- 3.3 V operation
- Standard packaging: 16-lead DIP and flat pack
- Pin Compatible with Existing Industry Products

Figure 1. Package Drawing

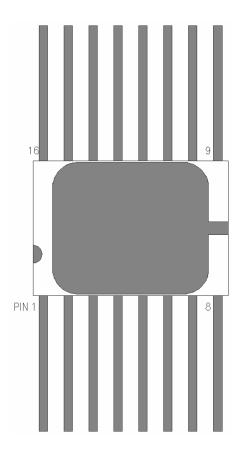
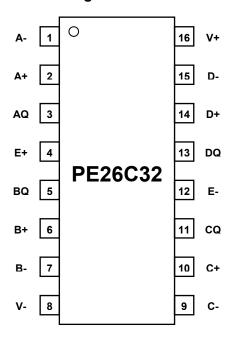



Figure 2. Pin Configuration

Table 1. Pin Descriptions

Pin No.	Pin Name	Description	
1	A-	Channel A Inverting Input	
2	A+	Channel A Noninverting Input	
3	AQ	Channel A Output	
4	E+	Enable, active high	
5	BQ	Channel B Output	
6	B+	Channel B Noninverting Input	
7	B-	Channel B Inverting Input	
8	V-	Ground Pin	
9	C-	Channel C Inverting Input	
10	C+	Channel C Noninverting Input	
11	CQ	Channel C Ouput	
12	E-	Enable, active low	
13	DQ	Channel D Output	
14	D+	Channel D Noninverting Input	
15	D-	Channel D Inverting Input	
16	V+	Supply Pin	

Table 2. Recommended Operating Conditions

Symbol	Parameter/Conditions	Min	Max	Units
V+	Supply voltage	3.0	3.6	V
T _{OP}	Operating temperature range	-55	125	°C
VIN (Line)	Maximum input voltage A+/-, B+/-, C+/-, D+/-	-7	7	V
VIN (Dig)	Maximum input voltage	0	(V+)	V
VOUT	Maximum output voltage	0	(V+)	V
IOUT	Maximum output current	-10	10	mA
V _{ESD}	ESD Voltage Human Body Model (Note 1)		1000	V

Note 1: Periodically sampled, not 100% tested. Tested per MIL-STD-883 M3015 C2.

Electrostatic Discharge (ESD) Precautions

When handling this UTSi device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 2.

Latch-Up Avoidance

Unlike conventional CMOS devices, UTSi CMOS devices are immune to latch-up.

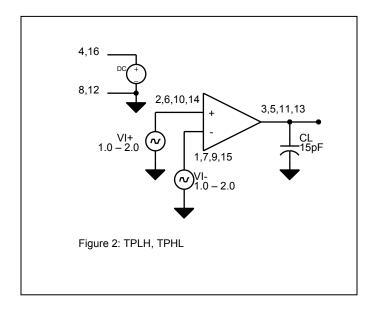
Device Functional Considerations

The PE826C32 operates at high switching speeds. In order to obtain maximum performance, it is crucial that pin 16 be supplied with a bypass capacitor to ground (pin 8).

Table 3. Truth Table

E+	E-	Vin (Diff)	Q
L	Н	Х	Z
Н	Х	<-200 mV	L
Х	L		
Н	Х	>+200 mV	Н
Х	L		
Н	Х	Open	Н
Χ	L		

Table 4. Electrical Specifications


-55° C < Tcase < 125° C, 3.0 V < V+ < 3.6 V, PreRad, unless otherwise specified

Parameter	Minimum	Typical	Maximum	Units
Supply Voltage	3.0	3.3	3.6	V
Supply Current (Line inputs open, enabled) (V+)=3.6V		5	10	mA
Input Threshold (Line, differential) VCM=+7 VCM=0 VCM=-7	-200 -200 -200		200 200 200	mV mV mV
Input Threshold Hysteresis (Line, Differential) VCM=0	5	15	100	mV
Input Resistance (Line pins) VCM=+7 VCM=0 VCM=-7	15 K 15 K 15 K		25 K 25 K 25 K	Ohms Ohms Ohms
Input Current (Line pins) VCM=+7 VCM=-7	-1200		1000	uA
Input Threshold (Enable)	(V+)*0.3	(V+)/2	(V+)*0.7	V
Input Current (Enable)	-1		1	uA
Input "Failsafe" Open Circuit Differential voltage	200		2500	mV
Output Drive Current @ 0.5 V from rail (high or low)	10			mA
Output Short Circuit Current (to V-)	15		75	mA
Output Tristate Current, 0 < Vout < V+	-5		5	uA
VOH @ 10 mA	(V+) - 0.5 V	(V+) - 0.4	(V+)	V
VOL @ 10 mA	0	0.4	0.5 V	V
TPHL (See Fig 2)		12	25	nS
TPLH (See Fig 2)		12	25	nS
TPZL, TPZH (See Fig 3)		10	25	nS
TPHZ, TPLZ (See Fig 3)		10	25	nS
FMAX	50			MHz

Notes:

- (1) "Line" pins refer to A-, A+, B-, B+, C-, C+, D-, D+, differential outputs
 (2) "Digital Input" or "Enable" pins refer to E+, E(3) "Digital Input" pins refer to AQ, BQ, CQ, DQ
 (4) Output Short Circuit not intended to imply continuous operation

Figure 3. TPLH, TPHL Test Circuit Block Diagram

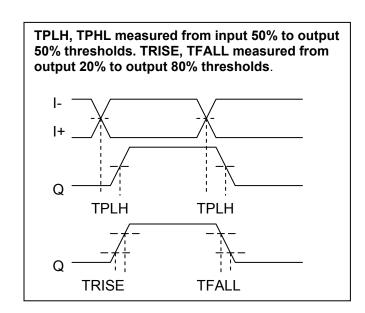
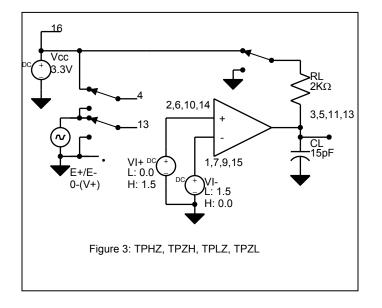
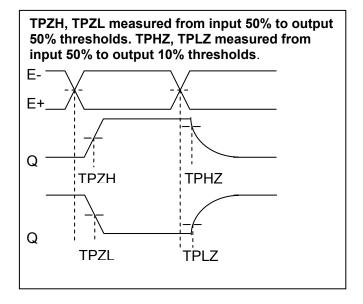




Figure 4. TPLZ, TPZL, TPHZ, TPZH Test Circuit Block Diagram

Table 5. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
<u>8</u> 26 <u>C</u> 32-01	PE826C32-01	Engineering Sample	16-pin DIP	1/Box
<u>8</u> 26 <u>C</u> 32-11	PE826C32-11	Production Unit, DIP	16-pin DIP	25/Tray
<u>8</u> 26 <u>C</u> 32-21	PE826C32-21	Production Unit, FP	16-lead FLAT PACK	25/Tray
<u>8</u> 26 <u>C</u> 32-00	PE826C32-EK	Eval <u>uation</u> Kit	Evaluation Board	1/Box

Sales Offices

United States

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

Europe

Peregrine Semiconductor Europe

Aix-En-Provence Office Parc Club du Golf, bat 9 13856 Aix-En-Provence Cedex 3 France Tel 33-0-4-4239-3360 Fax 33-0-4-4239-7227

Japan

Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 03-3507-5755

Fax: 03-3507-5601

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a PCN (Product Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine Space & Defense products are subject to export restrictions under both EAR (US Dept Of Commerce) and ITAR (USDept Of State). Contact Peregrine for current export restrictions, if any.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents are pending.

Peregrine, SEL Safe, the Peregrine logotype, Peregrine Semiconductor Corp. and UTSi are registered trademarks of Peregrine Semiconductor Corp. Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.