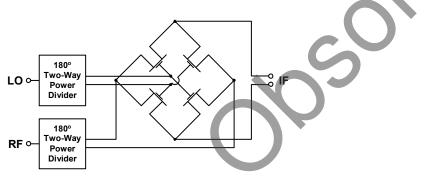


Product Description

The PE4135 is a high linearity passive Quad MOSFET Mixer for GSM800 & Cellular Base Station Receivers, exhibiting high dynamic range performance over a broad LO drive range of up to 20 dBm. This mixer integrates passive matching networks to provide single-ended interfaces for the RF and LO ports, eliminating the need for external RF baluns or matching networks. The PE4135 is optimized for frequency downconversion using low-side LO injection for GSM800 & Cellular Base Station application, and is also suitable for up-conversion applications.

The PE4135 is manufactured on Peregrine's UltraCMOS[™] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

High Linearity UltraCMOS™ Quad MOSFET Mixer


Features

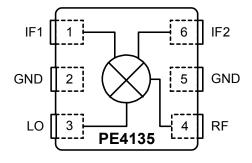
- Integrated, single-ended RF & LO interfaces
- High linearity: Typical IIP3 at 32dBm 820 - 920 MHz (+17 dBm LO)
- Low conversion loss: 6.8 dB (+17 dBm LO)
- High isolation: Typical LO-IF at 42 dB, LO-RF at 32 dB
- Small 6-lead 3x3 mm DFN package

Figure 1. Functional Diagram

Figure 2. Package Type

6-lead DFN

Table 1. Electrical Specifications @ +25 °C (unless otherwise specified)


Parameter ¹	Minimum	Typical	Maximum	Units
Frequency Range:				
LO	750		850	MHz
RF	820		920	MHz
IF ²		70		MHz
Conversion Loss ³		6.8	7.3	dB
Isolation:				
LO-RF	30	32		dB
LO-IF	40	42		dB
Input IP3	29	32		dBm
Input 1 dB Compression		21		dBm

Notes: 1. Test conditions unless otherwise noted: IF = 70 MHz, LO input drive = 17 dBm, RF input drive = 3 dBm.

- 2. An IF frequency of 70 MHz is a nominal frequency. The IF frequency can be specified by the user as long as the RF and LO frequencies are within the specified maximum and minimum.
- 3. Conversion Loss includes loss of IF transformer (M/A COM ETC1-1-13, nominal loss 0.7 dB at 70 MHz).

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description	
1	IF1	IF differential output.	
2	GND	Ground connections for Mixer. Traces should be physically short and connect immediately to ground plane for best performance. The exposed solder pad must also be soldered to the ground plane for best performance.	
3	LO	LO Input.	
4	RF	RF Input.	
5	GND	Ground connections for Mixer. Traces should be physically short and connect immediately to ground plane for best performance. The exposed solder pad must also be soldered to the ground plane for best performance.	
6	IF2	IF differential output.	

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[™] devices are immune to latch-up.

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
T _{ST}	Storage temperature range	-65	150	°C
T _{OP}	Operating temperature range	-40	85	°C
PLO	LO input power		20	dBm
P _{RF}	RF input power		12	dBm

Absolute Maximum Ratings are those values listed in the above table. Exceeding these values may cause permanent device damage. Functional operation should be restricted to the limits in the DC Electrical Specifications table. Exposure to absolute maximum ratings for extended periods may affect device reliability.

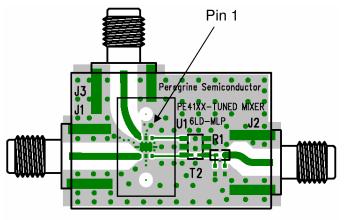
Table 4. Electrostatic Discharge (ESD) Ratings

÷ •		• •		•
Model	Parameter/Conditions	Min	Max	Units
НВМ1	All Pins		250	V
Notes: 1.	Human Body Model ESD Volta	age (HBM	, MIL_STI	D 883

1. Human Body Model ESD Voltage (HBM, MIL_STD 883 Method 3015.7)

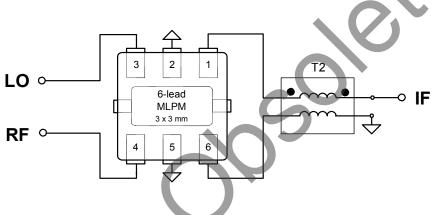
Electrostatic Discharge (ESD) Precautions

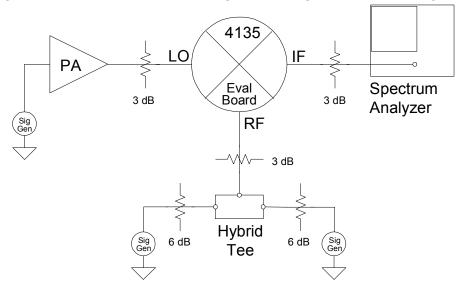
When handling this UltraCMOS[™] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.


Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE4135 in packaging is MSL1.

Evaluation Kit

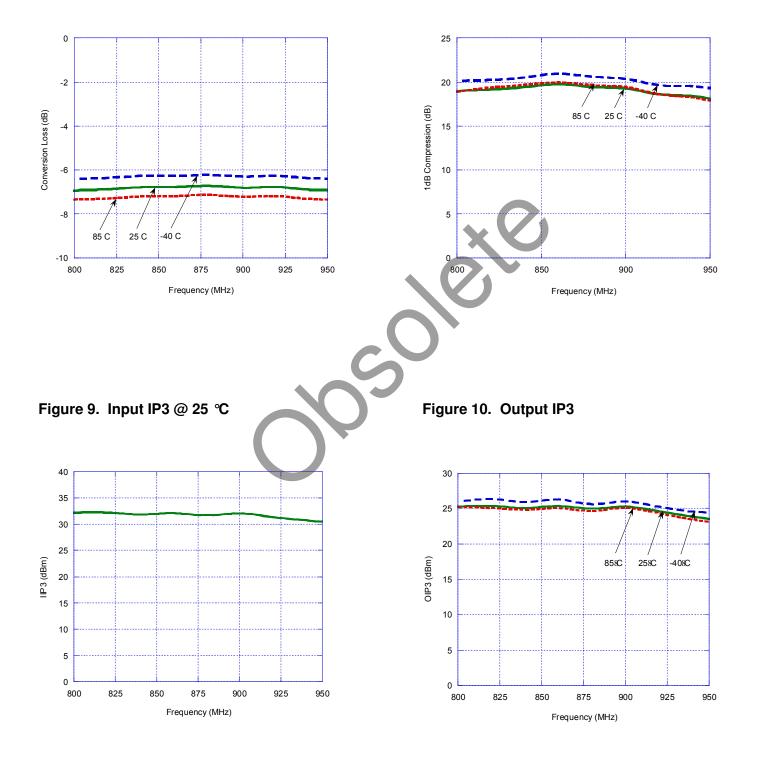

Figure 4. Evaluation Board Layout


Table 5. Bill of Materials

Reference	Value / Description		
T2	M/A Com ETK1-1-13		
R1	0Ω		
U1	PE4135 MLP Mixer		
J1, J2, J3	SMA Connector		

Figure 5. Evaluation Board Schematic

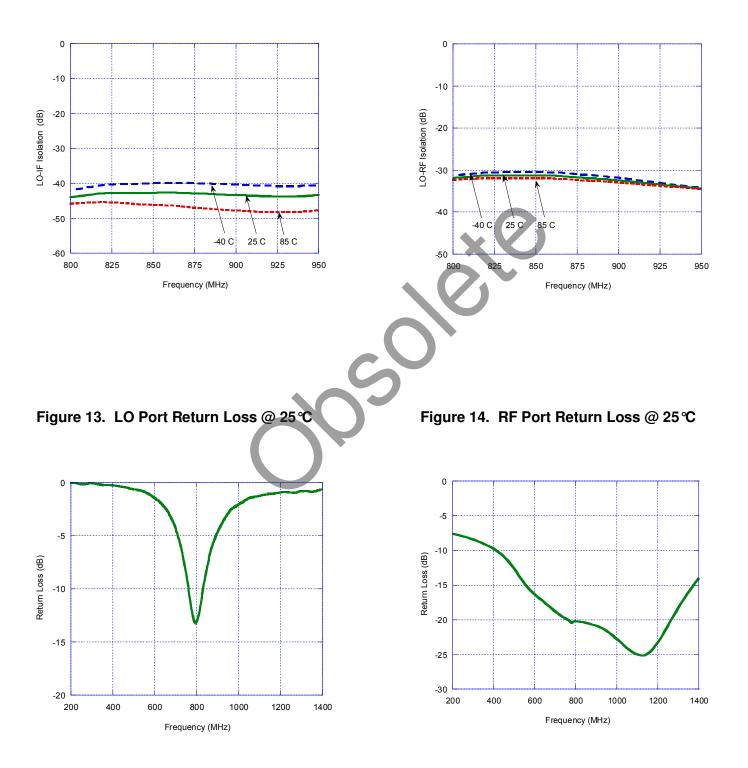
Figure 6. Evaluation Board Testing Block Diagram, 2-Tone Setup



Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz, unless otherwise specified)

Figure 7. Conversion Loss

Document No. 70-0086-05 | www.psemi.com



Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz, unless otherwise specified)

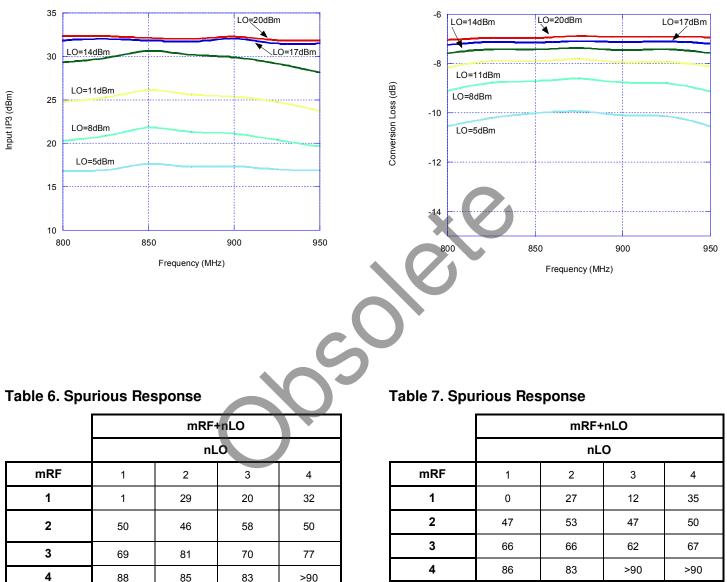
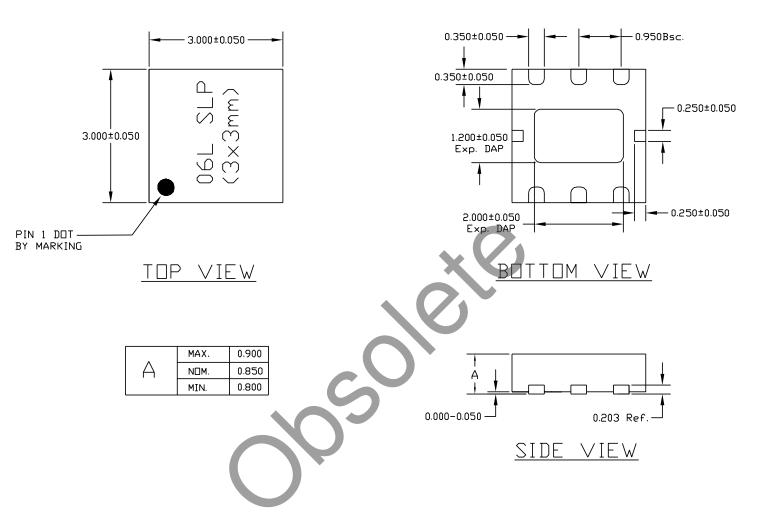

Figure 11. LO-IF Isolation

Figure 12. LO-RF Isolation

Typical Performance Data (LO=17 dBm, RF=3 dBm, IF=70 MHz, unless otherwise specified)Figure 15. Input IP3 Across LO PowerFigure 16. Conversion Loss Across LO Power

Note: Normalized to dB below PIF


(RF=870 Mhz @ 3 dBm, LO=940 MHz @ 17 dBm)

Note: Normalized to dB below PIF (RF=870 Mhz @ 3 dBm, LO=940 MHz @ 17 dBm)

Figure 17. Package Drawing

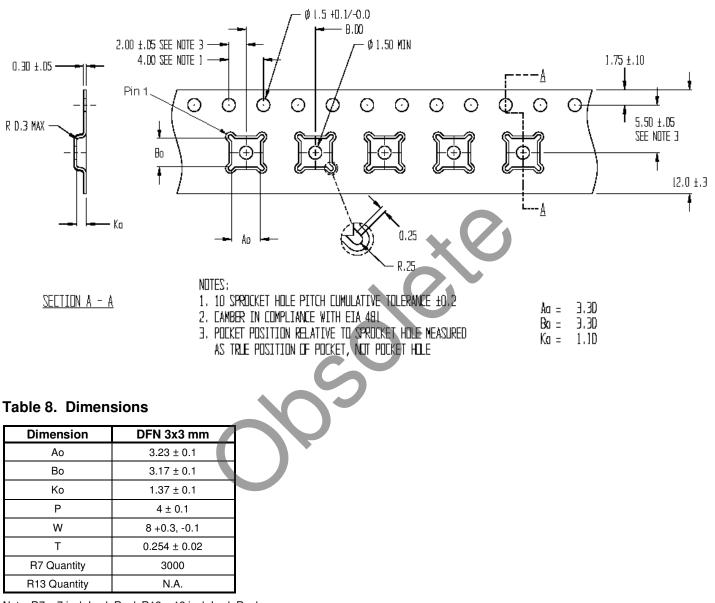

6-lead DFN

Figure 18. Tape and Reel Specifications

6-lead DFN

Note: R7 = 7 inch Lock Reel, R13 = 13 inch Lock Reel

Table 9. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
PE4135MLAB_CB	4135	PE4135-06L Green DFN 3x3mm-12800F	6-lead 3x3 mm DFN	12800 units/Canister
PE4135MLAB-CBZ	4135	PE4135-06L Green DFN 3x3mm-3000C	6-lead 3x3 mm DFN	3000 units/T&R
EK4135-01	PE4135-EK	PE4135-06L Green DFN 3x3mm-EK	Evaluation Kit	1/Box

Document No. 70-0086-05 | UltraCMOS[™] RFIC Solutions

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax : +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499

Europe/Asia-Pacific Parc Cezanne 1 380 Avenue Archimède, Parc de la Duranne 13857 Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361 Fax: +33-4-4239-7227

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconductor, Korea

#B-2607, Kolon Tripolis, 210 Geumgok-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-943 South Korea Tel: +82-31-728-3939 Fax: +82-31-728-3940

Peregrine Semiconductor K.K., Japan

Teikoku Hotel Tower 10B-6 1-1-1 Uchisaiwai-cho, Chiyoda-ku Tokyo 100-0011 Japan Tel: +81-3-3502-5211 Fax: +81-3-3502-5213

For a list of representatives in your area, please refer to our Web site at: *www.psemi.com*

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0086-05 | www.psemi.com