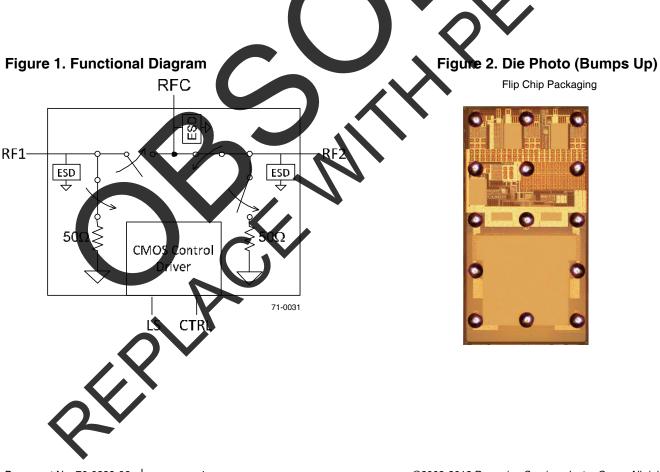


Product Specification PE42556 Flip Chip

Product Description

The PE42556 RF switch is designed for use in Test/ATE, cellular and other wireless applications. This broadband general purpose switch maintains excellent RF performance and linearity from 9 kHz through 13500 MHz. The PE42556 integrates on-board CMOS control logic driven by a single-pin, low voltage CMOS control input. It also has a logic select pin which enables changing the logic definition of the control pin. Additional features include a novel user defined logic table, enabled by the on-board CMOS circuitry. The PE42556 also exhibits excellent isolation of 26 dB at 13500 MHz, fast settling time, and is offered in a tiny Flip Chip package.


The PE42556 is manufactured on Peregrine's UltraCMOS® process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy an integration of conventional CMOS.

UltraCMOS[®] SPDT RF Switch 9 kHz - 13500 MHz

Features

- HaRP[™] technology enhanced

 - Eliminates gate lag No insertion loss or phase drift
- Fast settling time
 Next Gen 0.25 um process technology
- Single-pin 3.3V CMOS logic control
- High isolation: 26 dB@ 13.5 GHz
- Low insertion loss: 1.7 dB @ 13.5 GHz
 - P1dB: 33 dBm typical
- Return loss: 13 dB @ 13.5 GHz (typ)
- P3: +56 dBm typica
- High ESD: 4kV HBM
- Ab sorptive switch
- ip Chip packagir

Document No. 70-0289-06 | www.psemi.com

Table 1. Electrical Specifications: Temp = 25°C, V_{DD} = 3.3V

Parameter	Conditions	Min	Typical	Мах	Units
Operation Frequency		9 kHz		13500 MHz	As shown
Insertion Loss	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz		0.85 0.92 0.98 1.07 1.74	0.93 1.06 1.23 1.41 2.65	dB dB dB dB dB
Isolation – RF1 to RF2	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	76.5 43.5 30.0 24.0 15.5	88.5 46.0 31.5 25.5 17.5		dB dB dB dB dB
Isolation – RFC to RF1	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	72.5 39.0 31.5 27.0 21.5	84.0 40.5 33.0 30.5 26.5	20	dB dB dB dB dB
Isolation – RFC to RF2	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	75.5 39.5 31.5 27.5 21.0	87.0 41.0 33.9 50.5 26.0	54	dB dB dB dB dB
Return Loss	9 kHz - 10 MHz 10 - 3000 MHz 3000 - 7500 MHz 7500 - 10000 MHz 10000 - 13500 MHz	X	17.0 16.0 13.0		dB dB dB dB dB
Settling Time	50% CTRL to 0.05 dB final value (-40 to +85 °C) Rising Edge 50% CTRL to 0.05 dB final value (-40 to +85 °C) Failing Edge	K .	8.5 9.5	10.0 13.5	μs μs
Switching Time	50% CTRL to 90% or 10% of final value (-40 to +85 °C)		3.3	4.0	μs
Input 1 dB Compression ^{1,2}	13500 MHz		33		dBm
Input IP3 ¹	13500 MHz		56		dBm
Input IP2 ¹	13500 MHz		107.5		dBm

Notes: 1. Linearity and power performance are deroted at lower frequencies (< 1 MHz)

©2009-2012 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0289-06 | UltraCMOS[®] RFIC Solutions

Figure 3. Bump Configuration (Bumps Up)

Flip	Chip	Packa	aina
·	U p	1 40144	99

• •	•
CTRL	Vss
(12)	(1)
D-GND	D-GND
(13)	2
DGND	GND
(14)	(3)
DEC	RF2 (4) GND
\bigcirc	
6	(5)
	(12) D-GND (13)

Table 2. Bump Descriptions

Bump No.	Bump Name	Description		
1	V_{SS}	Negative supply voltage or GND connection (Note 3)		
2, 13, 14	D-GND	Digital Ground		
3, 5, 7, 9	GND	Ground		
4	RF2	RF Port 2		
6	RFC	RF Common		
8	RF1	RF Port 1		
10	LS	Logic Select - Used to determine the definition for the CTRL pin (see <i>Table 5</i>)		
11	V_{DD}	Nominal 3.3V supply connection		
12	CTRL	CMOS logic level		

Note: 3. Use VSS (bump 1, VSS = -VDD) to bypass and disable internal negative voltage generator. Connect VSS (bump 1) to GND (VSS = 0V) to enable internal negative voltage generator.

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Units ,	
V _{DD} Positive Power Supply Voltage	3.0	3.3	3.6	~	
V _{DD} Negative Power Supply Voltage	-3.6	-3 3	-3.0		
I_{DD} Power Supply Current (V _{ss} = -3.3V, V _{DD} = 3.0 to 3.6V, -40 to +85 °C)		8.0	25	μА	
I_{DD} Power Supply Current (V _{ss} = 0V, V _{DD} = 3.0 to 3.6V, -40 to +85 °C)		21.5	290	μA	
$\label{eq:lss} \begin{array}{l} I_{SS} \mbox{ Negative Power Supply} \\ \mbox{ Current} \\ (V_{ss} = -3.3V, \ V_{DD} = 3.0 \ to \\ 3.6V, \ -40 \ to \ +85 \ ^{\circ}C) \end{array}$		18.0	-24.0	μA	
Control Voltage High	0.7xV _{DD}			V	
Control Voltage Low			$0.3 \text{xV}_{\text{DD}}$	V	
$ \begin{array}{l} P_{IN} RF Power In^4 (\mathfrak{f0}\Omega) \\ & 9 kHz \mathfrak{s}^{-1} MHz \\ 1 MHz \mathfrak{s}^{-1} \mathfrak{s}^{-1} \mathfrak{s}^{-1} RF \end{array} $			Fig. 4,5 30	dBm dBm	

Note: 4. Please consult Figures 4 and 5 (low-frequency graphs) for recommended low-frequency operating power level.

Document No. 70-0289-06 | www.psemi.com

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V _{DD}	Power supply voltage	-0.3	4.0	V
Vı	Voltage on any input except for CTRL and LS inputs	-0.3	V _{DD} + 0.3	V
V _{CTRL}	Voltage on CTRL input		4.0	V
V _{LS}	V _{LS} Voltage on LS input		4.0	V
T _{ST}	Storage temperature range	-65	150	°C
T _{OP}	Operating temperature range	-40	85	°C
P _{IN} ⁵ (50Ω)	9 kHz ≤ 1 MHz 1 MHz ≤ 13.5 GHz		Fig. 4,5 30	dBm dBm
V _{ESD}	ESD voltage (HBM) ⁶ ESD voltage (Machine Model)		4000 300	V V

Notes: 5. Please consult *Figures 4* and *5* (low-frequency graphs) for recommended low-frequency operating power level. 6. Human Body Model (NBM, MIL_STD 883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[®] device, observe the same precaptions that you would use with other ESDsensitive devices. Although this device contains circuit to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[®] devices are immune to latch-up.

Table 5. Control Logic Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	off	on
0	1	on	off
1	0	on	off
1	1	off	on

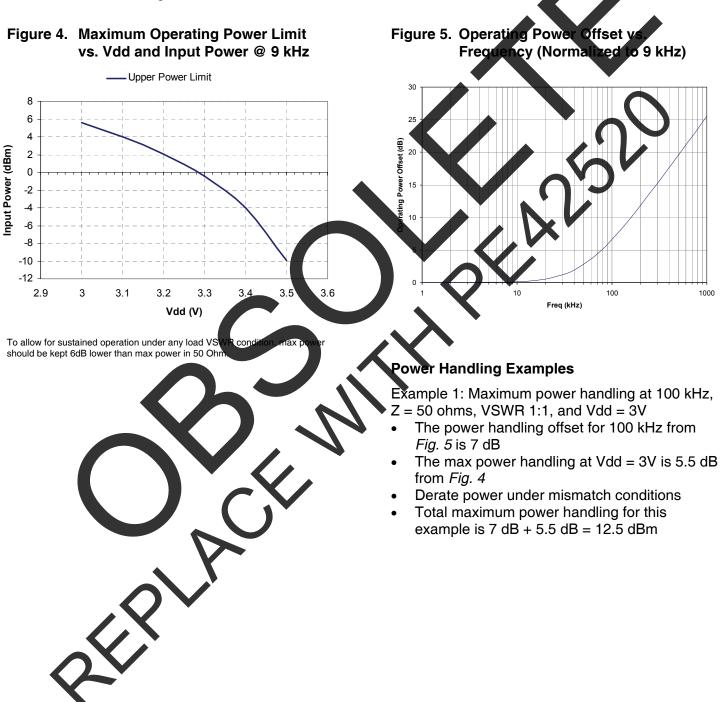
Logic Select (LS)

The Logic Select feature is used to determine the definition for the CTRL pin.

Spurious Performance

The typical spurious performance of the PE42556 is -116 dBm when VSS = 0V (bump 1 = GND). If further improvement is desired, the internal negative voltage generator can be disabled by setting VSS = -VDD.

Switching Frequency


The PE42556 has a maximum 25 kHz switching rate when the internal negative voltage generator is used (bump1 = GND). The rate at which the PE42556 can be switched is only limited to the switching time (*Table 1*) if an external negative supply is provided (bump1 = VSS).

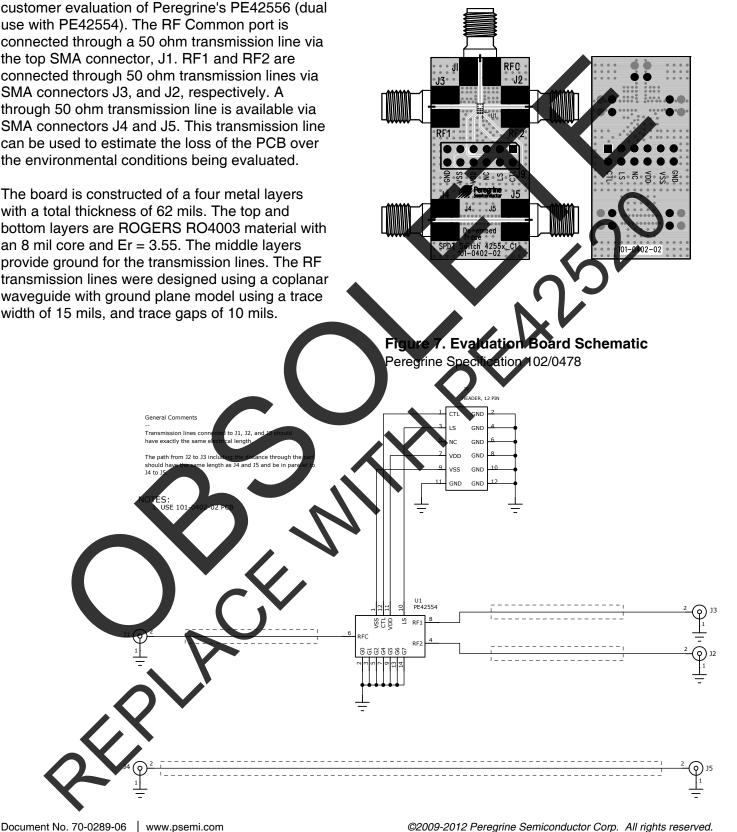
Low Frequency Power Handling: $Z_L = 50\Omega$

Figure 4 provides guidelines of how to adjust the Vdd and Input Power to the PE42556 device. The upper limit curve represents the maximum Input Power vs Vdd recommended for this part at low frequencies only. Please consult *Table 3* for the 1 MHz \leq 13.5 GHz range.

Figure 5 shows how the power limit in *Figure 4* will increase with frequency. As the frequency increases, the contours and Maximum Power Limit Curve will increase with the increase in power handling shown on the curve.

©2009-2012 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0289-06 | UltraCMOS[®] RFIC Solutions


Evaluation Kit

The SPDT switch EK Board was designed to ease customer evaluation of Peregrine's PE42556 (dual use with PE42554). The RF Common port is connected through a 50 ohm transmission line via the top SMA connector, J1. RF1 and RF2 are connected through 50 ohm transmission lines via SMA connectors J3, and J2, respectively. A through 50 ohm transmission line is available via SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a four metal layers with a total thickness of 62 mils. The top and bottom layers are ROGERS RO4003 material with an 8 mil core and Er = 3.55. The middle layers provide ground for the transmission lines. The RF transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 15 mils, and trace gaps of 10 mils.

Figure 6. Evaluation Board Layouts

Peregrine Specification 101/0402

Performance Plots: Temperature = 25°C, V_{DD} = 3.3V unless otherwise indicated

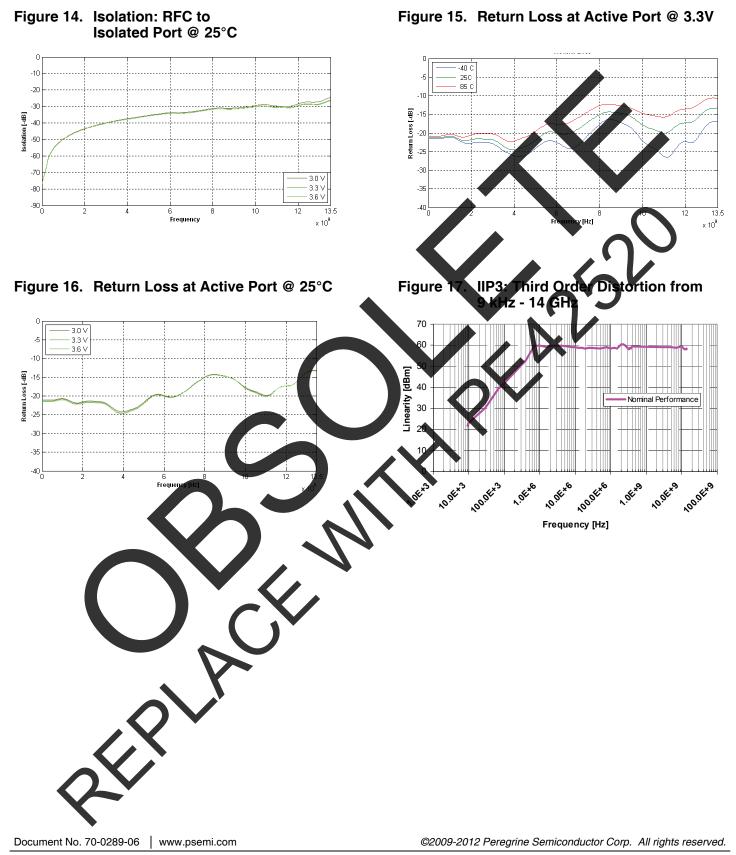


Figure 8. Nominal Insertion Loss: RF1, RF2

Figure 9. Insertion Loss: RFX @ 3.3V

Performance Plots: Temperature = 25 °C, V_{DD} = 3.3 V unless otherwise indicated

Table 6. Mechanical Specifications

Parameter	Minimum	Typical	Maximum	Units	Test Conditions
Die Size, Drawn (x,y)		996 x 1896		μm	As drawn
Die Size, Singulated (x,y)	1080 x 1980	1100 x 2000	1150 x 2050	μm	Including excess sapphire, max. tolerance = -20/+50 μm
Wafer Thickness	180	200	220	μm	
Wafer Size		150		mm	
Ball Pitch		400		μm	
Ball Height	72.25	85	97.75	μm	
Ball Diameter		110		μm	Typical
UBM Diameter	85	90	95	μm	

RoHS compliant lead-free solder balls

Solder ball composition: 95.5%Sn/3.5%Ag/ 1.0%Cu

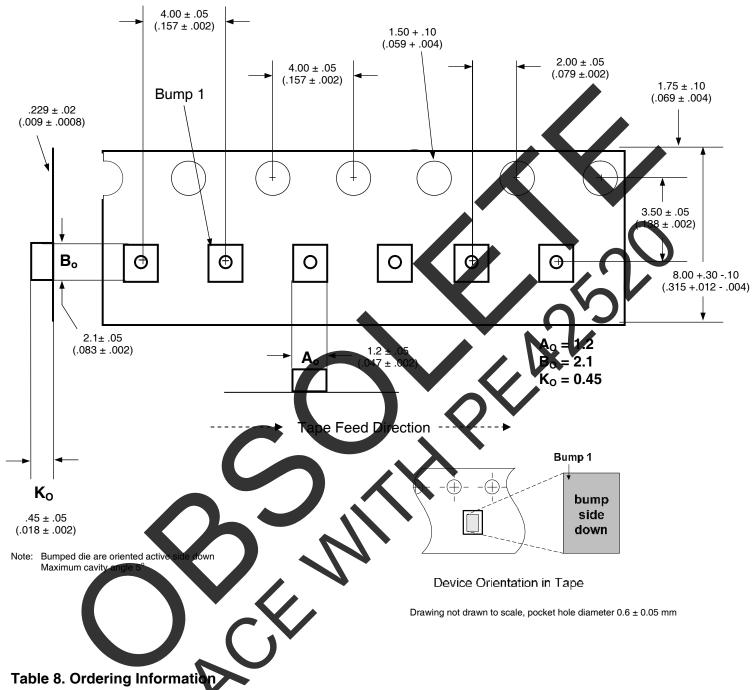
Table 7. Bump Coordinates

Bump Center (µm) Bump # **Bump Name** CTRL Vss Х γ (1)(12)VSS 850 1 400 D-GND D-GND LS 2 DGND 400 2 (13) 10 3 GND4 400 50 2000 DGND GND RF2 400 GND 4 3 9 (1|4)GND3 5 -750 6 RFC 0 RF2 RF1 4 8 7 GND1 -750 RE1 8 100 -350 RFC GND GND ND2 6 5 9 7 10 LS 400 VDD -400 11 12 0 50 1100 µm -20/+50 µm 13 DGND 450 14 DGND 50 0 Singulated Die size: 1.1 X 2.0 mm (400 µm ball pitch)

All bump locations originate from the die center and refer to the center of the bump.

Ball pitch is 400 µm.

2°


©2009-2012 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0289-06 | UltraCMOS[®] RFIC Solutions

Figure 18. Pad Layout (Burnes Up)

Order Code		Package	Specification	Shipping Method
PE42556DI	Die on out Tap	e and Reel	81-0012	Loose or cut tape
PE42556DI-Z	Die on full Tap	e and Reel	81-0012	1,000 Dice / Reel
PE42556DBI	Dié in waffle p	ack	81-0015	204 Dice / Waffle pack
EK42556-01	Evaluation Kit			1/ box

Document No. 70-0289-06 | www.psemi.com

Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

Advance Information: The product is the a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice **Preliming Specification:** The datasheet contains preliminary data. Additional data may be added at later stee. Peregrine reserves the right to change specifications: The datasheet contains from the vent pregrine decides to change the specifications, Peregrine will point out of the specification interded changes by issuing a CNF (Customer Notification Form).

The information in this detuction is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0289-06 | UltraCMOS[®] RFIC Solutions

©2009-2012 Peregrine Semiconductor Corp. All rights reserved.

Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com