
Product Description

The PE4270 is a is a high-isolation switch designed for CATV applications, covering a broad frequency range from 1 to 3000 MHz. This single-supply SPST switch offers a single-pin CMOS control interface with industry leading CTB performance. It also provides low insertion loss, high isolation and extremely low bias requirements while operating on a single 3-volt supply. In a typical CATV application, the PE4270 provides for a cost effective and manufacturable solution vs. mechanical relays.

The PE4270 is manufactured on Peregrine's UltraCMOS™ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Peregrine Specification 71/0010

Product Specification

PE4270

SPST CATV UltraCMOS™ Switch 1 - 3000 MHz

Features

- Integrated 0.25 w terminations
- CTB performance 100 dF
- High isolation. 90 dB a MHz, 63 at 1000 2
- Low sertion ss: 0.5 dB at MHz, 0.70 dB at 100 MHz
- righ input IP2: >8 Rm
- CMOSATTL single-pin control
- Single +3-volt supply operation
 - xtremely log bias: 8 μA @ 3 V
- ailable / a 6-lead DFN package

Figure 2. Package Type

6-lea FN

Table 1. Electrical Specific +25 ° $Z_S = Z_L = 75 \Omega$)

Parameter	Condition	Minimum	Typical	Maximum	Units
Operating Frequen		1		3000	MHz
Insertion Loss	1 – 1Hz 1000 z		0.50 0.70	0.65 0.85	dB
Isolation	1 – 5 10° //Hz	85 60	90 63		dB
F arn Loss	1000 MHz, V _{CTRL} = 3.0V	15	16		dB
dB Compression ^{2,4}	1000 MHz	28	30		dBm
V CSO	77 & 110 channels; PO = 44 dBmV		-90		dBc
Inpu. 2	1000 MHz	80			dBm
Input IP3	1000 MHz	50			dBm
Video Feedthrough ³				15	mV_{pp}
Switching Time			2		μS

Notes: 1. Device linearity will begin to degrade below 1 MHz.

- 2. Measured in a 50 Ω system.
- 3. Measured with a 1 ns risetime, 0/3 V pulse and 500 MHz bandwidth.

Figure 3. Pin Configuration

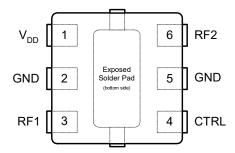


Table 2. Pin Descriptions

Pin	Pin Name	Description
1	V_{DD}	Nominal 3 V supply connection.
2	GND	Ground connection. 2
3	RF1	RF port. ¹
4	CTRL	CMOS or TTL logic level: High = RF1 to RF2 signal path Low = RF1 isolated from RF2
5	GND	Ground connection. 3
6	RF2	RF port. ¹

rnal DC Notes: 1. Both RF pins must be held at 0 V_{DC} or require blocking capacitors

> The exposed pad must be soldered to the groul ane for proper switch performance.

Table 3. Absolute Maximu Ratinàs

Symbol	Parameter/Condition	Min		Init
V_{DD}	Power supply voltage		4.0	/
Vı	Voltage on	-0.3	5.5	٧
T _{ST}	Storage	65		°C
P _{IN}	Input x (50 O'CTRL=1), 31		33/24	dBm
VES	FSD voltage Body (3/)		500	V

ceeding absol maximum ratings may cause rmanent dama Operation should be ricted to the li ts in the Operating Ranges Operation between operating range absolute maximum for extended

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE4270 in the 6-lead 3x3 DFN package is MSL1.

Table 4. Operating Ranges

Parameter	Min	Тур	Max	Unit
V _{DD} Power Supply	2.7	3.0	3.3	V
I _{DD} Power Supply Current			20	μΑ
$(V_{DD} = 3V, V_{CTRL} = 3V)$				μΛ
T _{OP} Operating temperature	-40			°C
Control Voltage High	0 DD		5	V
Control Voltage Low	0		$8xV_{DD}$	

Table 5. Control th Table

Control Voltage (CTRL)	S Path (RF1 to RF2)	
JA 1	ON	
Low	OFF	

both CMOSand TTL voltage leads. Notes: 1

Dischar (ESD) Precautions Electrosta

rtraCMOS™ device, observe When handling the same precautions that you would use with er ESD-seritive devices. Although this device altry to protect it from damage due to autions should be taken to avoid xceeding the rating specified in Table 3.

atch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS™ devices are immune to latch-up.

Device Description

The PE4270 high isolation SPST CATV switch is designed to support CATV applications such as premise disconnect of a CATV signal path. This function is typically performed by bulky and expensive mechanical relays. The high isolation characteristics, high compression point, and integrated 75-ohm terminations make the *PE4270* an ideal, cost effective and manufacturable product of choice.

The control logic input pin (CTRL) is typically driven by a 3-volt CMOS logic level signal, and has a threshold of 50% of V_{DD}. For flexibility to support systems that have 5-volt control logic drivers, the control logic input has been designed to handle a 5-volt logic HIGH signal. (A minimal current will be sourced out of the V_{DD} pin when the

Typical Performance Data @ -40 °C to 85 °C (Unless Otherwise Noted) (75 Ω impedance except as indicated)

Power Level (dBm)

Figure 4. Insertion Loss - RF1 to RF2

0 -0.5 Insertion Loss (dB) -1.5 -2 -2.5 -3 500 1000 1500 2000 2500 Frequency (MHz)

Figure 5. 1dB Compression & Order Intercept Point (T 60

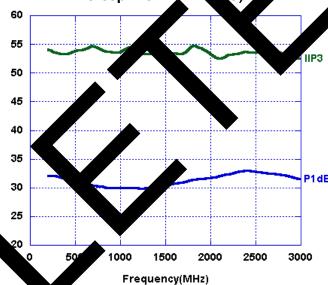


Figure 6. Isolation - RF1 to

Typical Performance Data @ -40 °C to 85 °C (Unless Otherwise Noted) (75-ohm impedance)

Figure 7. RF1 Return Loss (Switch = ON)

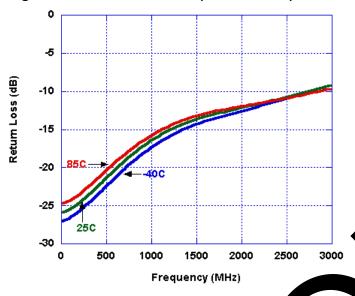


Figure 8. RF1 Return Loss (St

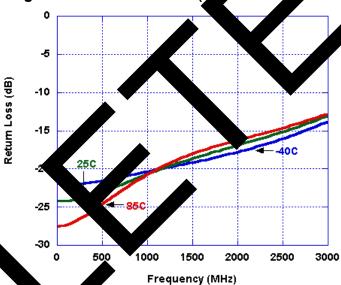


Figure 9. RF2 Return Loss (2)

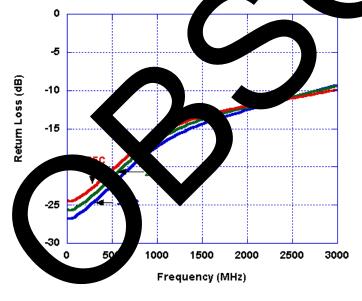
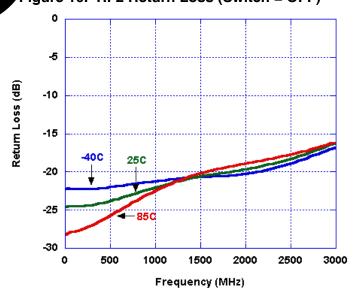
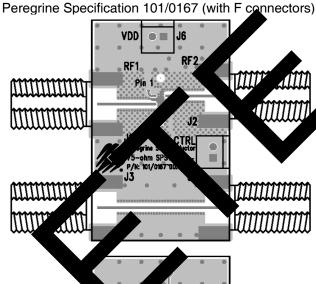



Figure 10. RF2 Return Loss (Switch = OFF)



Evaluation Kit

The PE4270 EK board was designed to ease customer evaluation of Peregrine's high performance SPST CATV MOSFET switch. RF1 is connected through a 75 Ω transmission line via the top left F connector, J1. RF2 is connected through a 75 Ω transmission line via the top right F connector, J2. A 75 Ω through transmission line is available via F connectors J3 and J4. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated. V_{DD} is supplied via J6-2, while the control logic voltage is supplied via J5-2. It is the responsibility of the customer to determine proper supply decoupling for their design application. It has been observed that by removing C1 and C2 from the evaluation board has not shown to degrade RF performance.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031". The bottom layer provides ground for the RF transmission lines. The transmission line designed using a coplanar waveguide mo el with trace width of 0.021", trace gaps of 0.030 dielectric thickness of 0.028", many 0.0021" and ε_r of 4.6. Note the ine predomina mode for these transmissio ines is co waveguide with a ground p

Figure 11. Evaluation Board Layouts

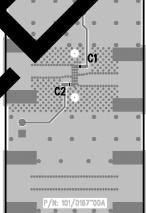


Figure 12. Evaluation Board Schematic Peregrine Specification 102/0224

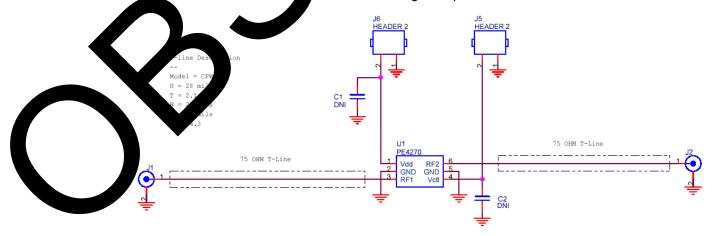
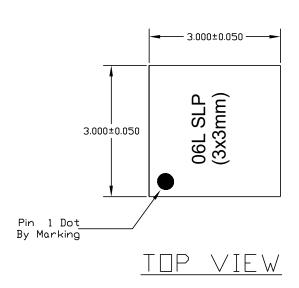
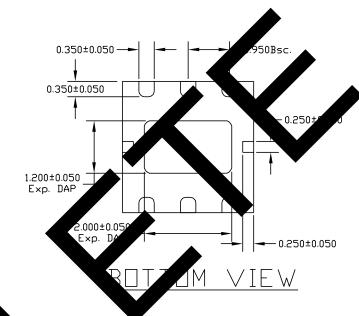
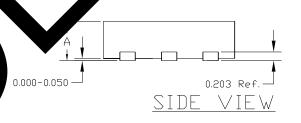
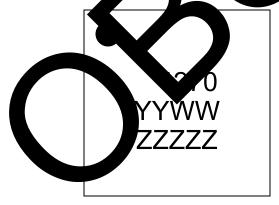




Figure 13. Package Drawing

6-lead DFN



NOTE:


1) TSLP AND SLP SHARE THE SAME EXPOSE O BUT WITH DIFFERENT THICKNESS:

		TSLP	Р	
	MAX.	0.800	V	
\land	N□M.	0.75	8.0	
	MIN.	00	0.800	

NOTE: The exposed solde ad (a n of the package) is not electrically connected to any other pin (isolated).

fication Figure 14. Mar

YYWW = Date Code (last two digits of year and work week)

ZZZZZ = Last five digits of Lot Number

Figure 15. Tape and Reel Specifications

6-lead DFN

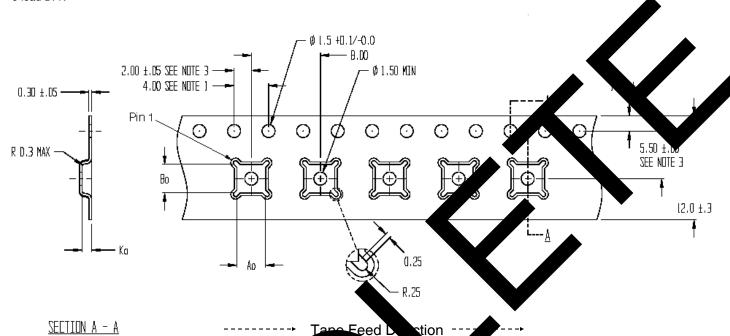


Table 6. Dimensions

Dimension	DFN 3x3 mr
Ao	3.23 ± 0.1
Во	3.17 ± 0.1
Ko	1
Р	4 ± 0.
W	8 +0.3.
Т	0.25 0.02
R7 Quantity	•000
P	

R7 = 7 inch Lo inch Lock Reel

NOTES:

- 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
- 2. CAMBER IN COMPLIANCE WITH EIA 481
- 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRLE POSITION OF POCKET, NOT POCKET HOLE

Device Orientation in Tape

7. Orderi Information

Order	Part Marking	Description	Package	Shipping Method
4270-51	4270	PE4270G-06DFN 3x3mm-12800F	Green 6-lead 3x3 mm DFN	Tape or loose
4270-52	4270	PE4270G-06DFN 3x3mm-3000C	Green 6-lead 3x3 mm DFN	3000 units / T&R
4270-00	PE4270-EK	PE4270-06DFN 3x3mm-EK	Evaluation Kit	1 / Box

Pin 1

Top of Device

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax: +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499

Europe/Asia-Pacific Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361

Fax: +33-4-4239-7227

ea, please refer to o For a list of representatives in you at: www.psemi.com

Data Sheet Identification

Advance Inform

The product is a ormative tage. The data sheet contains d targ ecifica s for product development. Spec s and featu may change in any m out no

liminary S ifical

e data sheet conta preliminary data. Additional data be added at a la date. Peregrine reserves the right nge specificat s at any time without notice in order ssible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Peregrine Semiconductor, As

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

tor, Korea Peregrine Semicond

#B-2607, Kolon Tripolis Geumgok-dong, Bur ig-gu, anam-si Gyeonggi-do, 462-943 South Kork

Tel: +82-31-72 39 Fax: +82-31

Peregr Semiconductor K.K., Japan

Teiko otel Towe B-6 1-1-1 Uc Chiyoda-J Tokyo 100 apan

Tel: +81-3-35 Fax: +81-3-3502

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

©2005-2010 pSemi Corporation All rights reserved.

Document No. DOC-41214-1 | UltraCMOS™ RFIC Solutions