

Product Specification

PE4307

75Ω RF Digital Attenuator 5-bit, 15.5 dB, 1 – 2000 MHz

Features

- Attenuation: 0.5 dB steps to 15.5 dB
- Flexible parallel and serial programming interfaces
- Latched or direct mode
- Unique power-up state selection
- Positive CMOS control legic
- High attenuation accuracy and linearity over temperature and frequency
- Very low power consumption
- Single-supply operation
- 15Ω impedance
- Pin compatible with PE430x series
 Packaged in a 20 lead 4x4 mm QFN

Product Description

The PE4307 is a high linearity, 5-bit RF Digital Step Attenuator (DSA) covering a 15.5 dB attenuation range in 0.5 dB steps. The device is pin compatible with the PE430x series. This 75-ohm RF DSA provides both parallel (latched or direct mode) and serial CMOS control interface, operates on a single 3-volt supply and maintains high attenuation accuracy over frequency and temperature. It also has a unique control interface that allows the user to select an initial attenuation state at power-up. The PE4307 exhibits very low insertion loss and low power consumption. This functionality is delivered in a 4x4 mm QFN footprint.

The PE4307 is manufactured on Peregrine's UltraCMOS® process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Schematic Diagram

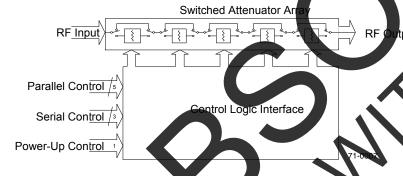


Figure 2. Package Type

20-lead 4x4 mm QFN

Table 1. Electrical Specifications @ $+25^{\circ}$ C, $V_{DD} = 3.0V$

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Unit
Operation Frequency		1	1		2000	MHz
Insertion Loss ¹		1 MHz ≤ 1.2 GHz	-	1.4	1.95	dB
Attenuation Accuracy	Any Bit or Bit Combination	1 MHz ≤ 1.2 GHz	-	-	±(0.15 + 4% of atten setting) Not to exceed +0.25 dB	dB dB
1 dB Compression ^{3,4}		1 MHz ≤ 1.2 GHz	30	34	-	dBm
Input IP3 ^{1,2,4}	Two-tone inputs up to +18 dBm	1 MHz ≤ 1.2 GHz	-	52	-	dBm
Return Loss	Zo = 75 ohms	1 MHz ≤ 1.2 GHz	10	13	-	dB
Switching Speed	50% control to 0.5 dB of final value		-	-	1	μS

Notes: 1. Device Linearity will begin to degrade below 1 MHz

- 2. Max input rating in *Table 3* & Figures on Pages 4 to 6 for data across frequency
- 3. Note Absolute Maximum in Table 3
- 4. Measured in a 50Ω system

Document No. 70-0161-05 | www.psemi.com

Figure 15. Pin Configuration (Top View)

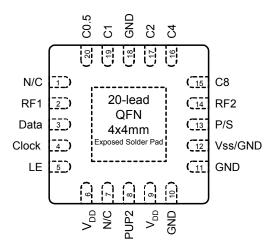


Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	N/C	No connect
2	RF1	RF port (Note 1)
3	Data	Serial interface data input (Note 4)
4	Clock	Serial interface clock input
5	LE	Latch Enable input (Note 2)
6	V_{DD}	Power supply pin
7	N/C	No connect
8	PUP2	Power-up selection bit
9	V_{DD}	Power supply pin
10	GND	Ground connection
11	GND	Ground connection
12	V _{ss} /GND	Negative supply voltage or GND connection (Note 8)
13	P/S	Paralle/Serial mode select
14	RF2	RF port (Note 1)
15	C8	Attenuation control bit, 8 dB
16	C4	Attenuation control bit, 4 dB
17	C2	Attenuation control bit, 2 dB
18	GND	Ground connection.
19	C1	Attenuation control bit, 1 dB
20	C0.5	Attenuation control bit, 0.5 dB
Paddle	GND	Ground for proper operation

Notes: 1. Both RF ports must be he C blocked with an external series capacitor

- $0 \text{ k}\Omega$ resistor to V_{DD} Latch Enable (L
- enable internal negative voltage Connect pin 12 12 to V_{SS} (-V_{DD}) to bypass and disable generator. (internal n generator
- eries, as close to pin as possible to avoid "Resistor on 3" paragraph

Table 3. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Power supply voltage	-0.3	4.0	٧
Vı	Voltage on any input	-0.3	V _{DD} + 0.3	٧
T _{ST}	Storage temperature range	-65	150	°C
P _{IN}	Input power (50Ω)		+30	dBm
V _{ESD}	ESD voltage (Human Body Model)		500	٧

Table 4. Operating Ranges

Parameter	Min	Тур	Max	Unit
V _{DD} Power Supply Voltage	2.7	3.0	3.3	V
I _{DD} Power Supply Current			00	μΑ
Digital Input High	$0.7xV_{DD}$	-		V
Digital Input Low		Y	0.3xV _{DD}	V
Digital Input Leakage			1	μΑ
Input Power			+24	dBm
Temperature range	-40		85	°C

Exposed Solder Pad Connection

The exposed solder pad on the bottom of the package must be grounded for proper device

ectrostatic Discharge (ESD) Precautions

When handling this UltraCMOS® device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rate specified in Table 3.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS® devices are immune to latch-up.

Switching Frequency

The PE4307 has a maximum 25 kHz switching rate.

Resistor on Pin 3

A 10 k Ω resistor on the input to Pin 3 (see *Figure 5*) will eliminate package resonance between the RF input pin and the digital input. Specified attenuation error versus frequency performance is dependent upon this condition.

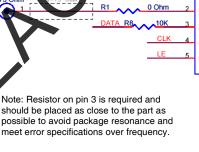
Document No. 70-0161-05 | UltraCMOS® RFIC Solutions

Evaluation Kit

The Digital Attenuator Evaluation Kit was designed to ease customer evaluation of the PE4307 DSA.

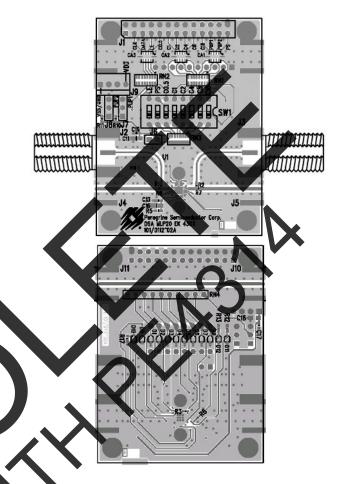
J9 is used in conjunction with the supplied DC cable to supply V_{DD} , GND, and $-V_{DD}$. If use of the internal negative voltage generator is desired, then connect $-V_{DD}$ (black banana plug) to ground. If an external $-V_{DD}$ is desired, then apply -3V.

J1 should be connected to the LPT1 port of a PC with the supplied control cable. The evaluation software is written to operate the DSA in serial mode, so switch 7 (P/S) on the DIP switch SW1 should be ON with all other switches off. Using the software, enable or disable each attenuation setting to the desired combined attenuation. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

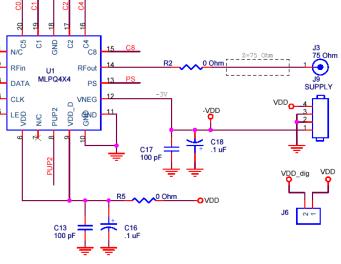

Note: Jumper J6 supplies power to the evaluation board support circuits.

To evaluate the Power Up options, first disconnect the control cable from the evaluation board. The control cable must be removed to prevent the PC port from biasing the control pins.

During power up with P/S=1 high and LE=1, the default power-up signal attenuation is set to the value present on the five control bits on the five parallel data inputs (C0.5 to C8). This allows any one of the 32 attenuation settings to be specified as the power-up state.


During power up with P/S=0 high and LE=0, the control bits are automatically set to one of two possible values presented through the PUP interface. These two values are selected by the power-up control bit, PUP2, as shown in *Table 6*.

Pins 1 and 7 are open and may be connected to any bias.


Figure 4. Evaluation Board Layout

Peregrine Specification 101/0112

Figure 5. Evaluation Board Schematic

Peregrine Specification 102/0142

Typical Performance Data @ 25°C, V_{DD} = 3.0V

Figure 6. Insertion Loss (Zo = 75 ohms)

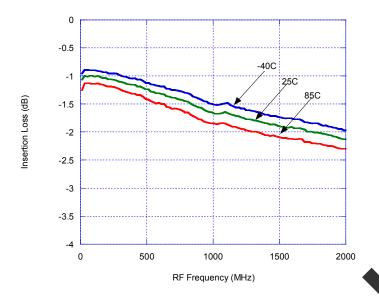


Figure 7. Attenuation at Major steps

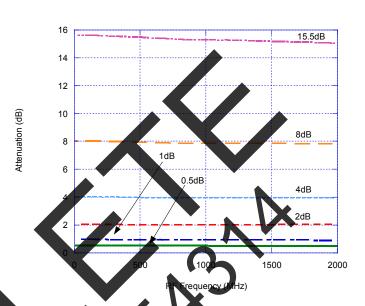


Figure 8. Input Return Loss at Major Attenuation Steps (Zo =

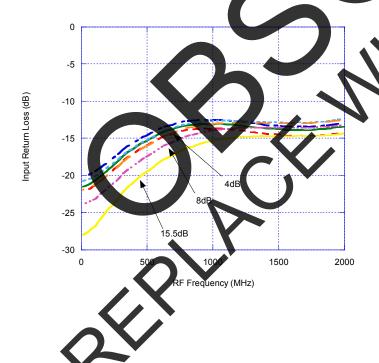
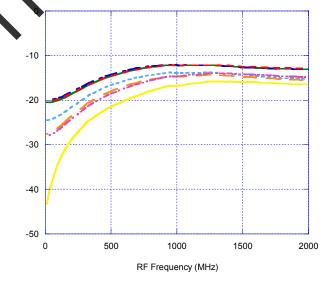



Figure 9. Output Return Loss at Major Attenuation Steps (Zo = 75 ohms)

©2003-2013 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0161-05 | UltraCMOS® RFIC Solutions

Output Return loss (dB)

Typical Performance Data @ 25°C, V_{DD} = 3.0V

Figure 10. Attenuation Error Vs. Frequency

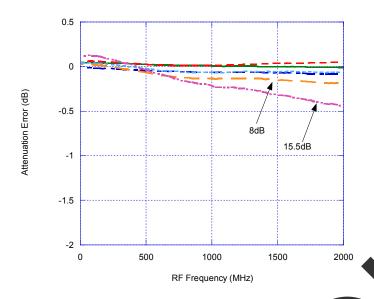


Figure 11. Attenuation Error Vs. Attenuatio **Setting**

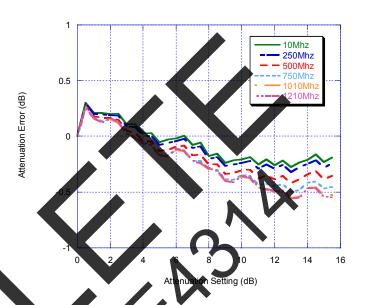
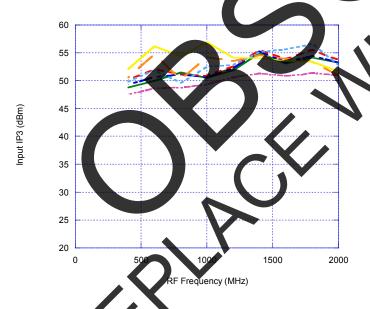
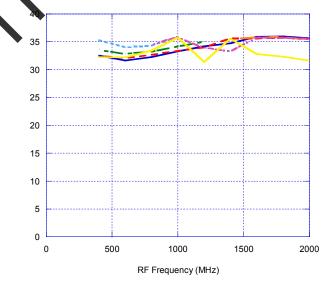




Figure 12. Input IP3 vs. Frequency (Zo = 50 ohms)

gure 13. Input 1 dB Compression (Zo = 50 ohms)

Note: Positive cates higher attenuation than target value IdB Compression (dBm)

Typical Performance Data @ 25°C, V_{DD} = 3.0V

Figure 14. Attenuation Error Vs. Attenuation **Setting**

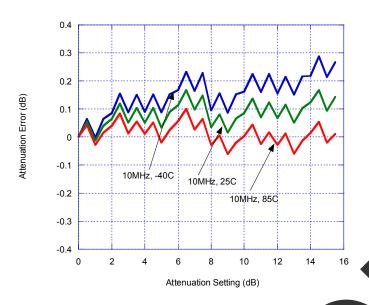


Figure 15. Attenuation Error Vs. Attenuation Setting

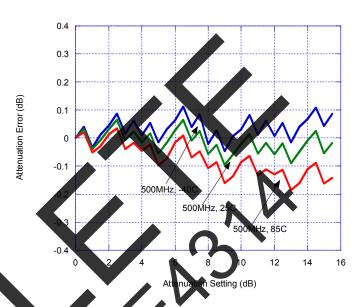
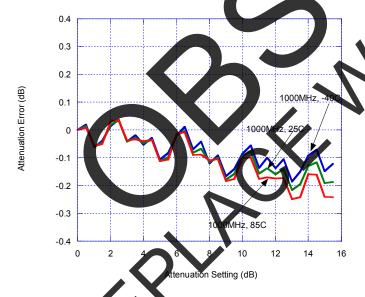
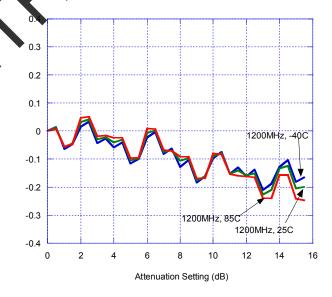




Figure 16. Attenuation Error Vs. Attenuation **Setting**

Note: Positive cates higher attenuation than target value

Figure 17. Attenuation Error Vs. Attenuation Setting

©2003-2013 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0161-05 | UltraCMOS® RFIC Solutions

Attenuation Error (dB)

Programming Options

Parallel/Serial Selection

Either a parallel or serial interface can be used to control the PE4307. The P/S bit provides this selection, with P/S = LOW selecting the parallel interface and P/S = HIGH selecting the serial interface.

Parallel / Direct Mode Interface

The parallel interface consists of five CMOScompatible control lines that select the desired attenuation state, as shown in Table 5.

The parallel interface timing requirements are defined by Figure 19 (Parallel Interface Timing Diagram), Table 9 (Parallel Interface AC Characteristics), and switching speed (Table 1).

For *latched* parallel programming, the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 19) to latch new attenuation state into device.

For direct parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change de state to new attenuation. Direct Mode is idmanual control of the device (using hardwire, switches, or jumpers).

Table 5. Truth Table

P/S	C8	C4	C2 .	01	C0.5	Attenuation State
0	0	0	0	0	Ø	Reference Loss
0	0	0	0	0	1	0.5 dB
0	0	0	0	1	0	1 dB
0	0	þ	1	0	0	2 dB
0	0	1	0	0	0	4 dB ✓
0	1	0	0	0	0	8 dB
0	1	1	7	1	1	15.5 dB

Note: Not all 32 possible combinations of C0.5-C8 are shown in table

Serial Interface

The PE4307's serial nterface is a 6-bit serial-in, parallel-out shift register buffered by a transparent latch. The latch is controlled by three CMOScompatible signals: Data, Clock, and Latch Enable and Clock inputs allow data to be

serially entered into the shift register, a process that is independent of the state of the LE input.

The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched.

The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LQW again, fatching the new data. The start bit (B5) of the data should always be low to prevent an unknown state in the device. The timing for this operation is defined by Figure 18 (Serial Interface Timing Diagram) and Table 8 (Serial Interface AC Characteristic

Power-up Control Settings

The PE4807 always assumes a specifiable attenuation setting on power-up. This feature exists for both the Serial and Parallel modes of operation, nd allows a known attenuation state to be stablished before an initial serial or parallel control word is provided.

When the attenuator powers up in Serial mode (P/S = 1) the five control bits are set to whatever data is present on the five parallel data inputs (C0.5 C8. This allows any one of the 32 attenuation ettings to be specified as the power-up state.

When the attenuator powers up in Parallel mode P/S = 0) with LE = 0, the control bits are automatically set to one of two possible values. These two values are selected by the power-up control bit, PUP2, as shown in Table 6 (Power-Up Truth Table, Parallel Mode).

Table 6. Power-Up Truth Table, Parallel Interface Mode

P/S	LE	PUP2	Attenuation State
0	0	0	Reference Loss
0	0	1	8 dB
0	1	Х	Defined by C0.5-C8

Note: Power up with LE=1 provides normal parallel operation with C0.5-C8, and PUP2 is not active

Figure 18. Serial Interface Timing Diagram

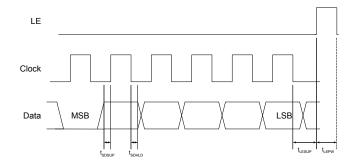


Figure 19. Parallel Interface Timing Diagram

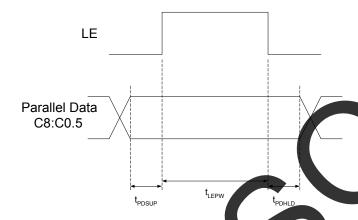


Table 8. Serial Interface AC Characteristics

 $V_{DD} = 3.0V$, $-40^{\circ}C < T_A < 85^{\circ}C$, unless otherwise

Symbol	Parameter	Min	Max	Unit
f _{Clk}	Serial data clock frequency (Note 1)		10	MHz
t _{ClkH}	Serial clock HIGH time	30		ns
t _{ClkL}	Serial clock LOW time	30	- /	ńs
t _{LESUP}	LE set-up time after last clock falling edge	10	J	ns
t _{LEPW}	LE minimum pulse width	30	>	ns
t _{SDSUP}	Serial data set-uprtime before clock rising edge	10		ns
t _{SDHLD}	Serial data hold time after clock falling edge	10		ns

during the functional pattern test. Serial programming a functional pattern are clocked at 10 MHz to verify fclk Note 1: f_{Clk} is verifie sections of t

Table 7. 5-Bit Attenuator Serial Programming Register Map

	B5	B4	B3	B2	B1	В0
	0	C8	C4	C2	C1	C0.5
Ī	\uparrow					↑
Ν	MSB (first	t in)				SB (last in

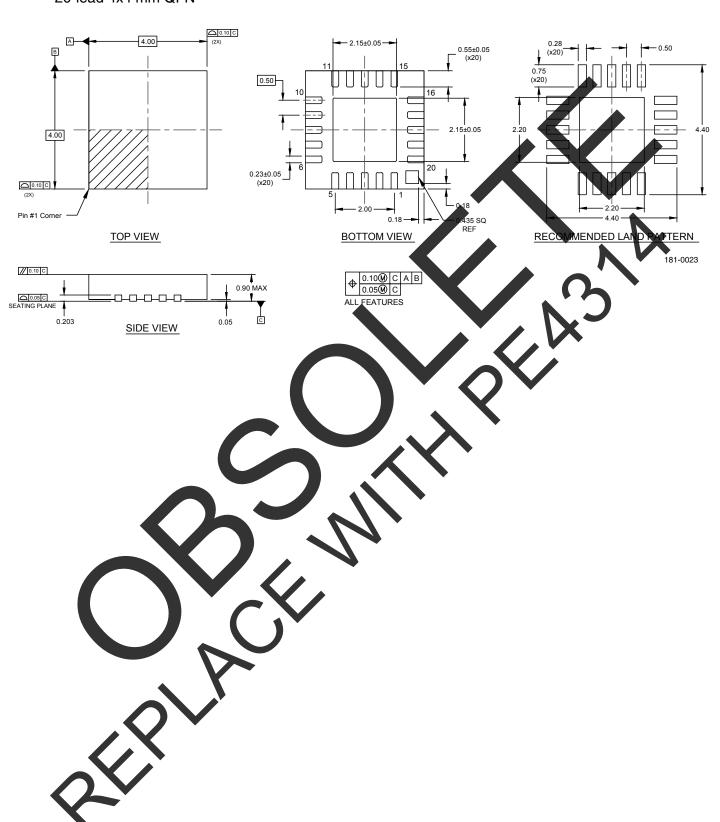
Note: The start bit (B5) must a n state in the device

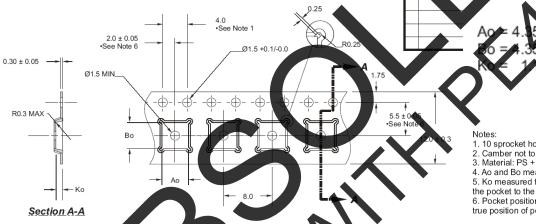
Table 9. Parallel Interface AC Characteristics

 $V_{DD} = 3.0V$, -40°C < T_A < 85°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
t _{LEPW}	LE minimum pulse width	10		ns
t _{PDSUP}	Data set-up time before rising edge of LE	10	1	ns
t _{PDHLD}	Data hold time after falling edge of LE	10		ns

Figure 20. Package Drawing 20-lead 4x4 mm QFN




Figure 21. Top Marking Specifications

YYWW = Date Code

ZZZZZ = Last five digits of PSC Lot Number

Figure 22. Tape and Reel Drawing

- 1. 10 sprocket hole pitch cumulative tolerance ±.02.
- Camber not to exceed 1mm in 100mm.
 Material: PS + C.
- 4. Ao and Bo measured as indicated.
- 5. Ko measured from a plane on the inside bottom of
- the pocket to the top surface of the carrier.
- 6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Table 10. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4307-01	4307	PL1807-20MLP 4x4mm-75A	20-lead 4x4 mm QFN	75 units / Tube
4307-02	4307	PE4307-20MLP 4x4mm-3000C	20-lead 4x4 mm QFN	3000 units / T&R
4307-00	PE4307-EK	PE4307-20MLP 4x4mm-EK	Evaluation Kit	1 / Box
4307-52	4307	PE4307G-20MLP 4x4mm-3000C	Green 20-lead 4x4 mm QFN	3000 units / T&R

Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

Advance Information: The product is it a formative or design stage. The datasheet contains design target specifications or product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at later data. Peregrine reserves the right to change specifications at any time without notice to order to choply the best possible product. Product Specification: The datasheet contains final stata. In the event Peregrine decides to change the specifications, Peregrine will product successful the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0161-05 | www.psemi.com

©2003-2013 Peregrine Semiconductor Corp. All rights reserved.