PE53110

Document Category: Product Specification

Single Channel Switch LNA Module, 3.3 GHz - 3.8 GHz

Features

- Wide frequency range with internal matching
- Integrates single-channel LNA with bypass and high power switch
- · Max RF input power
 - 5W Pavg for long term
 - 10W Pavg for short term
- 1.65 dB noise figure
- 30 dBm OIP3/ 32 dB gain at full gain mode
- +105 °C operating temperature
- Low power consumption: 90 mA
- Compact package size of 32-lead 5x5 mm

Applications

- 4G/4.5G TD-LTE macro/micro cell
- Pre-5G/5G massive MIMO systems
- Receiver protection system

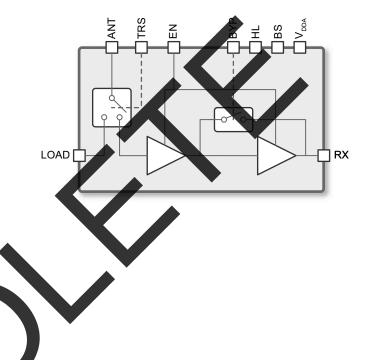


Figure 1 • PE53110 Functional Diagram

Product Description

The PE53110 is a highly integrated front-end module targeted for wireless infrastructure applications such as TDD macro/micro base stations and MIMO applications. It is designed for use at the front end of a receiver chain for a TDD-based system. The PE53110 is ideally suited for 4G or next-generation 5G solutions, or small cell applications.

The single-channel receiver integrates an LNA with bypass function and a high power switch. The PE53110 can be utilized across the 3.3–3.8 GHz frequency range with internal impedance matching networks.

This receiver utilizes pSemi's UltraCMOS SOI technology which supports input RF power signal up to 5W average power, assuming 8 dB PAR and very low noise figure, excellent linearity and very low power consumption.

©2017, 2018 pSemi Corporation. All rights reserved. • Headquarters: 9369 Carroll Park Drive, San Diego, CA, 92121

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in **Table 1** may cause permanent damage. Operation should be restricted to the limits in **Table 2**. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in **Table 1**.

Table 1 • Absolute Maximum Ratings for PE53110

Parameter	Rating	Unit
Power supply voltage	5.50	V
Control input voltage	3.60	V
Storage temperature range	-65 to 150	°C
RF input power, single event, average ⁽¹⁾	40	dBm
LNA input power	22	dBm
Human-body model, all pins ⁽²⁾	1000	V
Charged device model, all pins ⁽³⁾	500	
 TX mode, 10 min duration, 105 °C, 8 dB PAR Human body model (MIL-STD 883 Method 30 Charged device model (JEDEC JESD22-C10))15)	switching

Recommended Operating Conditions

Table 2 lists the recommending operating conditions for the PE53110. Devices should not be operated outside the recommended operating conditions listed below.

Table 2 • Recommended Operating Conditions for PE53110

Parameter	Min	Тур	Мах	Unit
V _{DD} positive supply voltage	4.75		5.25	V
Control voltage high	1.17		3.60	V
Control voltage low	-0.30		0.60	V
Digital input leakage current	-20	0	20	μA
Operating temperature range	-40	25	105	°C

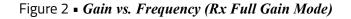
Electrical Specifications

Table 3 provides the PE53110 key electrical specifications @ +25 °C, V_{DD} = 5V ($Z_S = Z_L = 50\Omega$), unless otherwise specified.

Table 3 • PE53110 Electrical Specifications

Parameter	Condition	Min	Тур	Max	Unit
Frequency range		3300		3800	MHz
Input return loss	ANTA or ANTB, Rx mode at 3300 MHz at 3500 MHz at 3800 MHz		13.5 20 10		dB
Output return loss	At RXA or RXB, Rx mode at 3300 MHz at 3500 MHz at 3800 MHz		7 8.5 8		dB
Insertion loss	Tx operation mode, ANT-Load		0.7		dB
Max RF input power (Pavg)	Average value; No damage for long time operation. RF load connected to load with -10 dB return loss. LTE Signal PAR 8dB	5			W
TX/RX switching time	RX to TX or TX to RX, 50% cntl to 10/90 RF		550		ns
Bypass switching time	Bypass enable or disable, 50% ontil to 10/20 RF		200		ns
Switch isolation	RX mode, ANT to load termination		20		dB
Switch isolation	TX mode, LNA off, ANT to RX OUT		60		dB
In-band spurious emission	Rx mode at Rx out with pin = -49 dBm Pin is a CW signal swept across frequency range. Spec refers to any spurious mixing product that occurs across frequency range.		-85		dBc
Out-of-band emission	Rx mode at Rx out from DC to 12275 MHz Measure Pout with IBW = 4.5 MHz over frequency range with no input power applied.		-65		dBm
Full Gain Mode		•			
Supply current	5V supply, per channel, at max gain		90		mA
Bypass mode supply current	5V supply, per channel, second amp bypassed		25		mA
Gain	Full gain mode at 3300 MHz at 3500 MHz at 3800 MHz	31 29 26.5	32 30.5 28	33.6 31.9 29.8	dB
Gain flatness	Full gain mode	1	0.8		dB
Bypass gain	Bypass mode	11.7	14		dB
Bypass gain flatness	Full gain mode		0.6		dB
NF	Full gain or bypass mode	1	1.65	1.9	dB
OIP3 ⁽¹⁾	Full gain mode	28	29		dBm
Bypass OIP3 ⁽²⁾	Bypass mode	22	24		dBm

PE53110 Single Channel Switch LNA Module


Table 3 • PE53110 Electrical Specifications (Cont.)

Parameter	Condition	Min	Тур	Max	Unit
OP1dB	Full gain mode		19		dBm
Bypass OP1dB	Bypass mode		13		dBm
Low Power Mode					
Low power mode current	5V supply, per channel		75		mA
Bypass mode supply current	5V supply, per channel, second amp bypassed		25		mA
Gain	Full gain mode	26.5	28		dB
Gain flatness	Any 100 MHz bandwidth, at full gain		0.75		dB
Bypass gain	Bypass mode	12	14		dB
Bypass gain flatness	Any 100 MHz bandwidth, second amp bypassed		0.75		dB
NF	At max gain or bypass mode		1.65	1.90	dB
OIP3	Full gain mode	26	27.5		dBm
Bypass OIP3	Bypass mode	21.5	23.5		dBm
OP1dB	Full gain mode		19		dBm
Bypass OP1dB	Bypass mode		13		dBm
1) -35 dBm input power, 1 2) -25 dBm input power, 1			1	1	

Typical Performance Data

Figure 2 through Figure 18 show the typical performance data at nominal condition, unless otherwise specified.



Figure 3 • ANT Return Loss vs. Frequency (Rx Full Gain Mode)

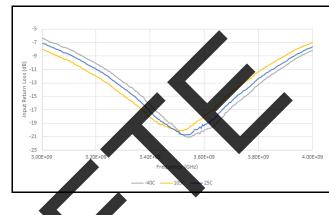


Figure 4 • *Rx Out Return Loss vs. Frequency (Rx Full Gain Mode)*

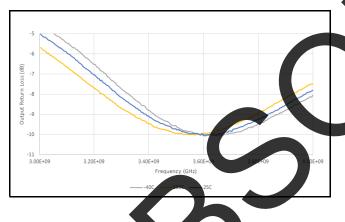
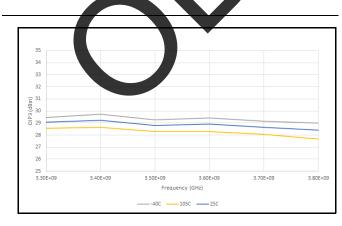
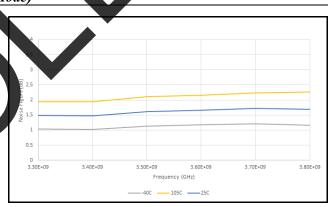
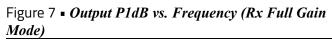





Figure 6 • OIP3 vs. Frequency (Rx Full Gain Mode)

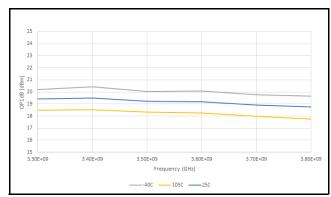


Figure 8 • Gain Over Temp vs. Frequency (Rx Bypass Mode)

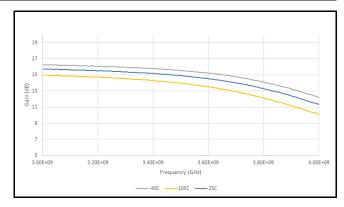


Figure 10 • *Rx Out Return Loss Over Temp vs. Frequency (Rx Bypass Mode)*

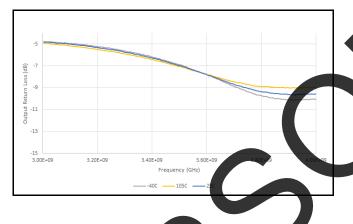


Figure 12 • OIP3 Over Temp vs. Frequency (Rx Bypass Mode)

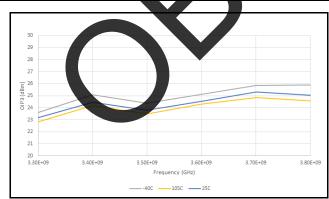


Figure 9 • ANT Return Loss Over Temp vs. Frequency (Rx Bypass Mode)

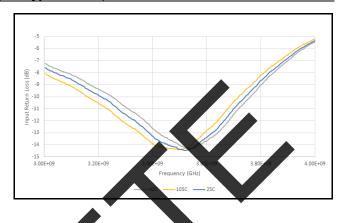
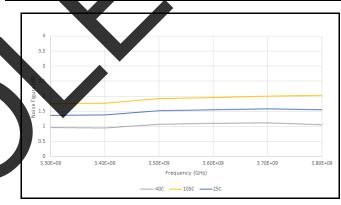
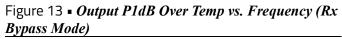




Figure 11 Noise Figure Over Temp vs. Frequency (Rx Bypass Mode)

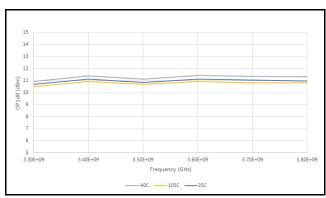
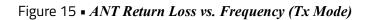



Figure 14 • Insertion Loss vs. Frequency (Tx Mode)

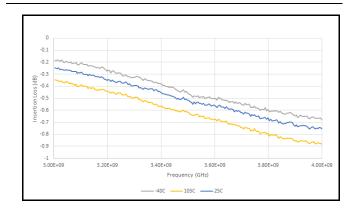


Figure 16 • *Rx Out Return Loss vs. Frequency (Tx Mode)*

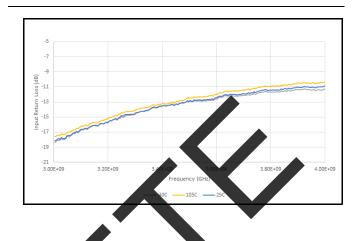
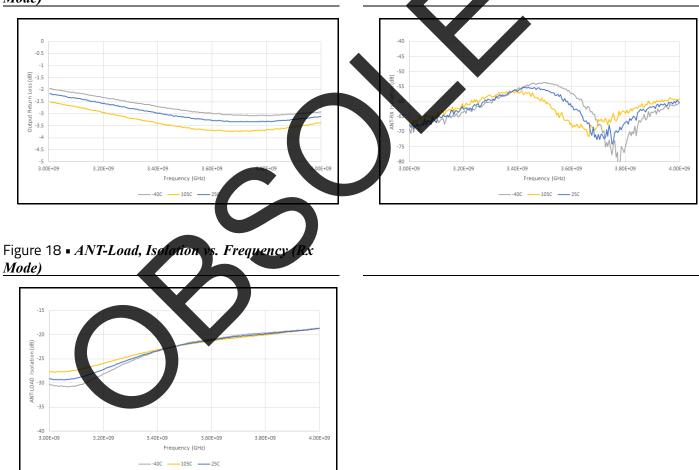



Figure 17 ANT-Rx Isolation vs. Frequency (Tx Mode)

Supply Current vs. Resistor Value

Table 4 • Supply Current vs. Resistor Value

Part Number	Resistor Value	Supply Current— Rx Full Gain Mode	Supply Current— Rx Bypass Mode	
PE53210/PE53211	120 KΩ (R9, R10)	90 mA	25 mA	
FE33210/FE33211	200 KΩ (R9, R10)	75 mA	25 mA	
PE53110/PE53111	120 KΩ (R9)	90 mA	2 5 mA	
FE33110/FE33111	200 KΩ (R9)	75 mA	25 mA	

C

Load

Table 5 • Pin Descriptions for PE53110

Pin No.

1

Pin

Name

LOAD

Pin Configuration

This section provides pin information for the PE53110. Figure 19 shows the pin configuration of this device. Table 5 provides a description for each pin.

Figure 19 • Pin Configuration (Top View)

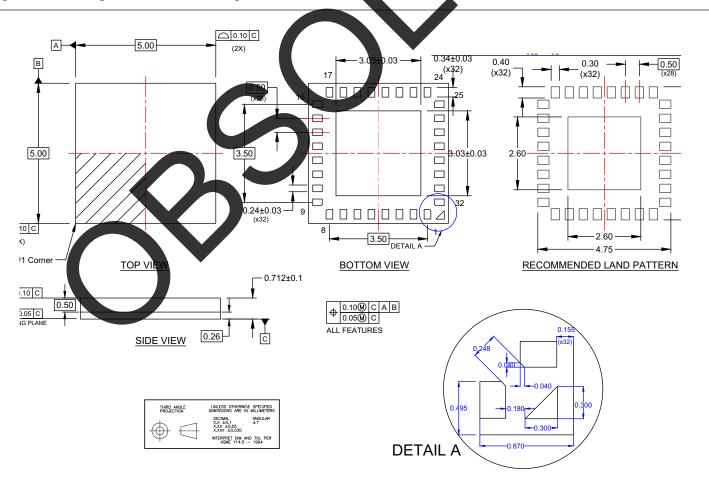
	2–9, 11–14, 16–23, 31	GND	Ground
Pin 1 Dot Marking LOAD	10	NC	Not connected. Pin 10 (NC) must be left NOT CON- NECTED at the application board for proper operation.
GND 22 GND GND 33 222 GND GND 43 Exposed 221 GND GND 55 Ground Pad 220 GND GND 65 (19) GND	15	BS2	Isolation, BS1 and BS2 are internally logic high if left float- ing. If they are connected to the TRS control pin, it will improve ANT to RX isolation in TX mode.
GND [7]) GND [8] (11 GND	24	RX	RF output port External 39pF DC blocking capacitor is required.
	25	V _{DD}	Supply voltage
GND GND GND GND GND GND GND GND GND GND	26	BS1	Isolation. BS1 and BS2 are internally logic high if left float- ing. If they are connected to the TRS control pin, it will improve ANT to RX isolation in TX mode.
	27	HL	Bias. HL requires a 120k Ohm resistor to the application board GND to set 90 mA in Rx Full Gain mode, BYP=0.
	28	BYP	LNA bypass control
	29	EN	LNA enable
	30	TRS	High power switch control
	32	ANT	Antenna
	PAD	GND	Exposed pad: ground for proper operation

Truth Table

Table 6 • Receiver Module Single Channel Tx-Rx Control Logic Truth Table

Mode	BS1	BS2	ENA	TRS	BYP
Receive—Full Gain	1	1	1	1	0
Receive—Bypass	1	1	1	1	1
Transmit	1	1	0	0	0

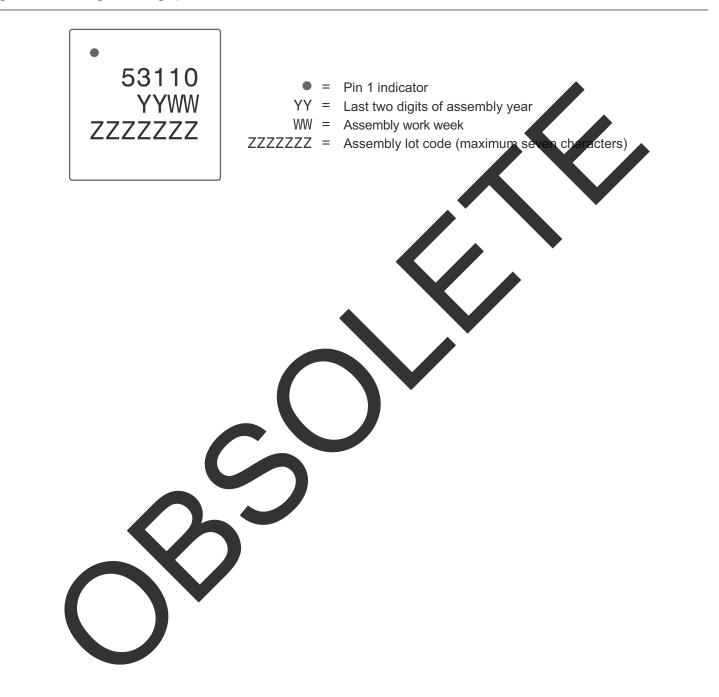
Packaging Information


This section provides packaging data including the moisture sensitivity level, package drawing, package marking and tape-and-reel information.

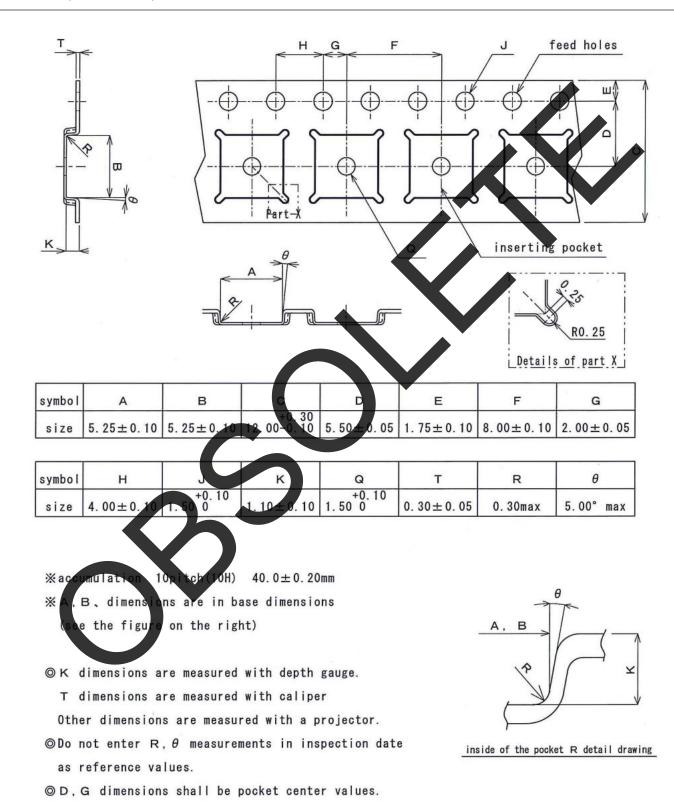
Moisture Sensitivity Level

The moisture sensitivity level rating for the PE53110 in the 32-lead $5 \times 5 \times 0.71$ mm LGA package is MSL 3.

Package Drawing


Figure 20 • Package Mechanical Drawing for 32-lead 5 × 5 × 0.71 mm LGA

Top-Marking Specification


Figure 21 • Package Marking Specifications for PE53110

Tape and Reel Specification

Figure 22 • Tape and Reel Specification for PE53110

Ordering Information

Table 7 lists the available ordering codes for the PE53110 as well as available shipping methods.

Table 7 • Order Codes for PE53110

Order Codes	Description	Packaging	Shipping Method
PE53110A-Z	PE53110 Switch and LNA	32-lead 5x5 mm LGA	3000 units/T&R
EK53110-01	PE53110 Evaluation kit	Evaluation kit	1/Box

Document Categories

Advance Information

The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The datasheet contains final data, in the event p semi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Sales Conta

For additional information, contact Sales at sales@psemi.com.

Disclaimer

The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk no patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2017, 2018, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.