Single Channel Switch LNA Module, 2.3 GHz-2.7 GHz

Figure 1 • PE53111 Functional Diagram

- Wide frequency range with internal matching
- Integrates single-channel LNA with bypass and high power switch
- Max RF input power
- 5W Pavg for long term
- 10W Pavg for short term
- 1.4 dB noise figure
- 30 dBm OIP3/ 34 dB gain at full gain mode
- $+105^{\circ} \mathrm{C}$ operating temperature
- Low power consumption: 90 mA per channel
- Compact package size of 32 -lead $5 \times 5 \mathrm{~mm}$

Applications

- 4G/4.5G TD-LTE macro/micro cell
- Pre-5G/5G massive MIMO systems
- Receiver protection system

Product Description

The PE53111 is a highly TDD macro/micro base stations for TDD-based systems. The P applications.
The single-chanmel receiverintegrates an LNA with bypass function and a high power switch. The PE53111 can be utilized across the 2.3
This receiver utilizes pSer average power assuming consumption.
ted front-end nodule targeted for wireless infrastructure applications such as and MIMO application. It is designed for use at the front end of a receiver chain E53411 is ideally suited for 4 G or next-generation 5 G solutions, or small cell 2.7 GHz frequency range with internal impedance matching networks.
's UltraCMOS SOI technology which supports input RF power signal up to 5W dB PAR and very low noise figure, excellent linearity and very low power

Absolute Maximum Ratings

Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

ESD Precautions

When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1.

Table 1 • Absolute Maximum Ratings for PE53111

Parameter	Rating	Unit
Power supply voltage	5.50	v
Control input voltage	3.60	v
Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
RF input power, single event, average ${ }^{(1)}$	40	dBm
LNA input power	22	
Human-body model, all pins ${ }^{(2)}$	100	
Charged device model, all pins ${ }^{(3)}$		
1) TX mode, 10 min duration, $105^{\circ} \mathrm{C}, 8 \mathrm{~dB}$ 2) Human body model (MIL-STD 883 Meth 3) Charged device model (JEDEC JESD22		

Table 2 lists the recommending operating conditions for the PE53111. Devices should not be operated outside the recommended operating conditions listed below.

Table 2 - Recommended Operating Conditions for PE53111

Parameter	Min	Typ	Max	Unit
$V_{\text {DD }}$ positive supply voltage	4.75		5.25	V
Control voltage high	1.17		3.60	V
Control voltage low	-0.30		0.60	V
Digital input leakage current	-20	0	20	$\mu \mathrm{~A}$
Operating temperature range	-40	25	105	${ }^{\circ} \mathrm{C}$

Electrical Specifications

Table 3 provides the PE53111 key electrical specifications @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right)$, unless otherwise specified.

Table 3 • PE53111 Electrical Specifications

Parameter	Condition	Min	Typ	Max	Unit
Frequency range		2300		2700	MHz
Input return loss	ANTA or ANTB, Rx mode at 2300 MHz at 2500 MHz at 2700 MHz			-	dB
Output return loss	At RXA or RXB, Rx mode at 2300 MHz at 2500 MHz at 2700 MHz		$\begin{gathered} 10 \\ 9 \\ 9 \end{gathered}$		dB
Insertion loss	Tx operation mode, ANT-Load		0.3		dB
RF max input power (Pavg)	Average value; No damage for long time operation. RF load connected to load with -10 dB return loss. LTE Signal PAR 8dB	5			W
TX/RX switching time	RX to TX or TX to RX, 50\% cntl to 10/90		710		ns
Bypass switching time	Bypass enable or disable, 50\% cntl to 10/90 RF		220		ns
Switch isolation	RX mode, ANT to load termination		25		dB
Switch isolation	TX mode, LNA off, ANT to RX OUT		60		dB
In-band spurious emission	Rx mode at Rx out with Pin $=-49 \mathrm{dBm}$ Pin is a CW signal swept across frequency range. Spec refers to any spurious mixing product that occurs across frequency range.		-85		dBc
Out-of-band emission	Rx mode at Rx out from DC to 12275 MHz Measure Rout with IBW $=4.5 \mathrm{MHz}$ over frequency range with no input power applied.		-65		dBm
Full Gain Mode					
Supply current	5V supply, per channel, at max gain		90		mA
Bypass mode s current	channel, second amp bypassed		25		mA
Gain	Full gain mode at 2300 MHz at 2500 MHz at 2700 MHz	$\begin{aligned} & 32 \\ & 32 \\ & 31 \end{aligned}$	$\begin{gathered} 34.5 \\ 34 \\ 33 \end{gathered}$		dB
Gain flatness	Any 100 MHz bandwidth, at full gain		0.6		dB
Bypass gain	Bypass mode	15	17		dB
Bypass gain flatness	Any 100 MHz bandwidth		0.60		dB
NF at 2700 MHz	Full gain or bypass mode		1.45	1.75	dB
OIP3 ${ }^{(1)}$	Full gain mode	28	30		dBm
Bypass OIP3 ${ }^{(2)}$	Bypass mode	23.5	26		dBm
OP1dB	Full gain mode		19		dBm

Table 3-PE53111 Electrical Specifications (Cont.)

Parameter	Condition	Min Typ	Max	Unit
Bypass OP1dB	Bypass mode	12		dBm
Low Power Mode				
Low power mode current	5 V supply, per channel	75		mA
Bypass mode supply current	5 V supply, per channel, second amp bypassed	25		mA
Gain	Full gain mode	33.5		dB
Gain flatness	Any 100 MHz bandwidth, at full gain			dB
Bypass gain	Bypass mode			dB
Bypass gain flatness	Any 100 MHz bandwidth, second amp bypassed			dB
NF	Full gain or bypass mode	1	1.75	dB
OIP3	Full gain mode	28		dBm
Bypass OIP3	Bypass mode	24.5		dBm
OP1dB	Full gain mode	18		dBm
Bypass OP1dB	Bypass mode	12.5		dBm
1) -35 dBm input power, 1 MHz tone spacing 2) -25 dBm input power, 1 MHz tone spacing				

Typical Performance Data

Figure 2 through Figure 17 show the typical performance data at nominal condition, unless otherwise specified.

Figure 2 • Gain vs. Frequency (Rx Full Gain Mode)

Figure 4 - Rx Out Return Loss vs. Frequency (Rx Full

Figure 3 : ANT Return Loss vs. Frequency (Rx Full Gain Mode)

Figure 5 - Noise Figure vs. Frequency (Rx Full Gain (Mode)

Figure 7 • Output P1dB vs. Frequency (Rx Full Gain Mode)

Figure 8 • Gain Over Temp vs. Frequency (Rx Bypass Mode)

Figure 10 • Rx Out Return Loss Over Temp vs. Frequency (Rx Bypass Mode)

Figure 9 - ANT Return Loss Over Temp vs. Frequency (Rx Bypass Mode)

Figure 11. Noise Figure Over Temp vs. Frequency (Rx Bypass Mode)

Figure 13 • Output P1dB Over Temp vs. Frequency (Rx Bypass Mode)

Figure 14 • Insertion Loss vs. Frequency (Tx Mode)

Figure 16•Rx Out Return Loss vs. Frequency (Tx Mode)

Figure 15 • ANT Return Loss vs. Frequency (Tx Mode)

Figure 17 ANT-Rx, Isolation vs. Frequency (Tx Mode)

Supply Current ve, Res stor Val

Table 4 - Supply Current vs, Resistor Value

Part Nu	esis	Supply CurrentRx Full Gain Mode	Supply Current- Rx Bypass Mode
PE53210/PE532	$120 \mathrm{~K} \Omega(\mathrm{R9}, \mathrm{R} 10)$	90 mA	25 mA
	200 K 2 (R9, R10)	75 mA	25 mA
PE53110/PE53111	$120 \mathrm{~K} \Omega$ (R9)	90 mA	25 mA
	$200 \mathrm{~K} \Omega$ (R9)	75 mA	25 mA

Pin Configuration

This section provides pin information for the PE53111. Figure 18 shows the pin configuration of this device. Table 5 provides a description for each pin.

Figure 18 • Pin Configuration (Top View)

Table 5 • Pin Descriptions for PE53111

Pin No.	Pin Name	Description
1	LOAD	Load
$\begin{gathered} 2-9,11-14,16-23, \\ 31 \end{gathered}$	GND	Ground
10	NC BS2	Not connected. Pin 10 (NC) must be left NOT CON- NECTED at the application for proper operation. Isolation BS1 and BS2 are internaliy logic high if left floating. If they are connected to the TRS control pin, it will grove ANT to $R X$ isolation in TX mode.
		RF output port External 39pF DC blocking capacitor is required.
25	$V_{\text {DD }}$	Supply voltage
26	BS1	Isolation. BS1 and BS2 are internally logic high if left floating. If they are connected to the TRS control pin, it will improve ANT to $R X$ isolation in TX mode.
27	HL	Bias. HL requires a 120 k Ohm resistor to the application board GND to set 90 mA in Rx Full Gain mode, BYP=0.
28	BYP	LNA bypass control
29	EN	LNA enable
30	TRS	High power switch control
32	ANT	Antenna
PAD	GND	Exposed pad: ground for proper operation

Truth Table

Table 6-Receiver Module Single Channel Tx-Rx Control Logic Truth Table

Mode	$B S 1$	$B S 2$	ENA	TRS	$B Y P$
Receive—Full Gain	1	1	1	1	0
Receive—Bypass	1	1	1	1	1
Transmit	1	1	0	0	0

Packaging Information

This section provides packaging data including the moisture sensitivity level, marking and tape-and-reel information.

Moisture Sensitivity Level

The moisture sensitivity level rating for the PE53111 in the 32 -lead $5 \times 5 \times 0.71 \mathrm{~mm}$ LGA package is MSL 3 .

Package Drawing

Figure 19 • Package Mechanical Drawing for 32 -lead $5 \times 5 \times 0.71 \mathrm{~mm}$ LG

Top-Marking Specification

Figure 20 • Package Marking Specifications for PE53111

Tape and Reel Specification

Figure 21 • Tape and Reel Specification for PE53111

as reference values.
© D, G dimensions shall be pocket center values.

Single Channel Switch LNA Module

Ordering Information

Table 7 lists the available ordering codes for the PE53111 as well as available shipping methods.
Table 7 : Order Codes for PE53111
 issuing a CNF (Customer Notification Form).
Sales Conta
For additional information, contact \$ales at sales@psemi.com. Disclaimers
The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Patent Statement

pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com

Copyright and Trademark

©2018, pSemi Corporation. All rights reserved. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries.

